
Agenda for today

• Information Retrieval Basics

– Term-document matrix

– Inverted indices

– Boolean retrieval, index intersection

• Additional topics on terms and postings

– Faster intersection of posting lists

– Positional indices

– Tokenization and normalization

1

What is IR

Definition from Manning, Raghavan and Schütze:

Information retrieval (IR) is:

finding material (usually documents)

of an unstructured nature (usually text)

that satisfies an information need
from within large collections (usually stored on computers).

2

Traditionally...

3

Material

• Most retrieved data currently documents consisting largely of text

– Disparate file formats (MS Word, PDF, etc.)

– Various text encodings (e.g., ASCII, UTF-8, etc.)

– Inconsistently formatted

– Multilingual

• Multi-modal retrieval increasingly important

– Images, speech, video, smells, etc.

– Each modality introduces its own complications

– Mixtures of modalities present opportunities and challenges

4

Unstructured

• Definition from Manning, Raghavan and Schütze:

“ data which does not have clear, semantically overt, easy-for-a-

computer structure ”

• Does not mean there is no structure in the data

– Document structure (headings, paragraphs, lists, etc.)

– Explicit document markup formatting

– Linguistic structure (hidden)

• Rather, not structured rigidly like a relational database

5

Information need / large collection

• Fundamental model

– Collection/corpus of “documents”

– Each document consists of some number of “terms”

• User has an information need, presented as a query

– Map query to “terms”; search for “documents” containing “terms”

• Many possible realizations of this model:

– What’s a “document” (unit of retrieval)?

– What’s a “term”? (typically a word/token)

• Whatever the definition: find documents containing terms

6

Exact match problem

• Nearly the same problem as exact match in bioinformatics

– Given a relatively short pattern (term)

– Find instances of the pattern in a large text

• Here we have documents, sort of like bins in the text

– Do not necessarily need exact position, just document ID

• Algorithms can either focus on the pattern or the text

– Preprocess the pattern for sub-linear scan of whole text

– Preprocess the text if it is fixed (e.g., suffix tree)

• In IR, document sets large enough that grep not an option

7

Term-document matrix

• Starting point for thinking about indexing

• Establish list of terms (lexicon, dictionary) in the corpus

• Create a matrix with rows=terms and columns=documents

• Cell (t, d) has 1 if term t occurs in d; 0 otherwise:

Online edition (c) 2009 Cambridge UP

4 1 Boolean retrieval

Antony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

! Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the
play in column d contains the word in row t, and is 0 otherwise.

them as words, but the information retrieval literature normally speaks of
terms because some of them, such as perhaps I-9 or Hong Kong are not usually
thought of as words. Now, depending on whether we look at the matrix rows
or columns, we can have a vector for each term, which shows the documents
it appears in, or a vector for each document, showing the terms that occur in
it.2

To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the
vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a
bitwise AND:

110100 AND 110111 AND 101111 = 100100

The answers for this query are thus Antony and Cleopatra and Hamlet (Fig-
ure 1.2).

The Boolean retrieval model is a model for information retrieval in which weBOOLEAN RETRIEVAL

MODEL can pose any query which is in the form of a Boolean expression of terms,
that is, in which terms are combined with the operators AND, OR, and NOT.
The model views each document as just a set of words.

Let us now consider a more realistic scenario, simultaneously using the
opportunity to introduce some terminology and notation. Suppose we have
N = 1 million documents. By documents we mean whatever units we haveDOCUMENT

decided to build a retrieval system over. They might be individual memos
or chapters of a book (see Section 2.1.2 (page 20) for further discussion). We
will refer to the group of documents over which we perform retrieval as the
(document) collection. It is sometimes also referred to as a corpus (a body ofCOLLECTION

CORPUS texts). Suppose each document is about 1000 words long (2–3 book pages). If

2. Formally, we take the transpose of the matrix to be able to get the terms as column vectors.

8

Boolean Retrieval

• Query: Brutus AND Caesar AND NOT Calpurnia

• Determine the bit vector (row) for each term in query:
Brutus: 110100

Caesar: 110111

Calpurnia: 010000

• Take the complement of Calpurnia: 101111

• Perform a bitwise AND:
Brutus 110100

Caesar: 110111

NOT Calpurnia: 101111

Answer 100100

9

Term-document matrix

• Limited in key ways

– Matrix grows too large for standard sized problems

e.g., hundreds of thousands of terms, millions of documents

– Fortunately very sparse, amenable to sparse representations

– Great for simple query operators, others not feasible

e.g., two query words occurring “near” each other

– No means to rank the resulting matching document set

• Will move towards richer representations, beginning with “inverted”

index

10

Inverted index

• Sparse representation of the term-document matrix

• Sorted list of document IDs (“postings”) for each term

Online edition (c) 2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which

are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID

struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

• Determine results by intersecting postings

11

Building inverted indices

• Four basic steps to build an inverted index for a collection

– Collect the documents to be collected (unit of retrieval)

– Tokenize the collection; documents become lists of tokens

– Text preprocessing (decasing, normalization, stemming, etc.)

– Index the tokenized, normalized collection

∗ Indices typically include document frequency (# of postings)

• Rather than simple bitwise intersection, now intersecting list

– Assume sorted lists; simple, efficient algorithms

– Various methods to improve typical complexity

12

Merge algorithm

• Merge algorithm: scan through sorted lists simultaneously;

advance pointer on the lesser document ID

Online edition (c) 2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which

are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID

struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

13

Merge algorithm

• Merge algorithm: scan through sorted lists simultaneously;

advance pointer on the lesser document ID

Online edition (c) 2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which

are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID

struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Online edition (c) 2009 Cambridge UP

1.3 Processing Boolean queries 11

INTERSECT(p1, p2)
1 answer ← 〈 〉
2 while p1 $= NIL and p2 $= NIL

3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer

! Figure 1.6 Algorithm for the intersection of two postings lists p1 and p2.

and walk through the two postings lists simultaneously, in time linear in
the total number of postings entries. At each step, we compare the docID
pointed to by both pointers. If they are the same, we put that docID in the
results list, and advance both pointers. Otherwise we advance the pointer
pointing to the smaller docID. If the lengths of the postings lists are x and
y, the intersection takes O(x + y) operations. Formally, the complexity of
querying is Θ(N), where N is the number of documents in the collection.6

Our indexing methods gain us just a constant, not a difference in Θ time
complexity compared to a linear scan, but in practice the constant is huge.
To use this algorithm, it is crucial that postings be sorted by a single global
ordering. Using a numeric sort by docID is one simple way to achieve this.

We can extend the intersection operation to process more complicated queries
like:

(1.2) (Brutus OR Caesar) AND NOT Calpurnia

Query optimization is the process of selecting how to organize the work of an-QUERY OPTIMIZATION

swering a query so that the least total amount of work needs to be done by
the system. A major element of this for Boolean queries is the order in which
postings lists are accessed. What is the best order for query processing? Con-
sider a query that is an AND of t terms, for instance:

(1.3) Brutus AND Caesar AND Calpurnia

For each of the t terms, we need to get its postings, then AND them together.
The standard heuristic is to process terms in order of increasing document

6. The notation Θ(·) is used to express an asymptotically tight bound on the complexity of
an algorithm. Informally, this is often written as O(·), but this notation really expresses an
asymptotic upper bound, which need not be tight (Cormen et al. 1990).

14

Merge algorithm

• For lists of length m and n, complexity O(m + n)

– Bounded by O(N) for a collection of N documents

• Non-optimal in certain scenarios

– e.g., very small list with a large list

• Various optimizations can be carried out to improve typical case

– Fast binary search methods for long list with very short list

∗ Complexity O(m logn) instead of O(m + n)

– Optimizations on complex queries to determine most restrictive

∗ Most restrictive first: (Brutus AND Calpurnia) AND Caesar

15

Data structures for index

• Typically store document frequency (DF) with postings list:

Online edition (c) 2009 Cambridge UP

8 1 Boolean retrieval

Doc 1 Doc 2
I did enact Julius Caesar: I was killed
i’ the Capitol; Brutus killed me.

So let it be with Caesar. The noble Brutus
hath told you Caesar was ambitious:

term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

! Figure 1.4 Building an index by sorting and grouping. The sequence of terms
in each document, tagged by their documentID (left) is sorted alphabetically (mid-
dle). Instances of the same term are then grouped by word and then by documentID.
The terms and documentIDs are then separated out (right). The dictionary stores
the terms, and has a pointer to the postings list for each term. It commonly also
stores other summary information such as, here, the document frequency of each
term. We use this information for improving query time efficiency and, later, for
weighting in ranked retrieval models. Each postings list stores the list of documents
in which a term occurs, and may store other information such as the term frequency
(the frequency of each term in each document) or the position(s) of the term in each
document.

• Can store postings lists in a couple of ways

– Linked list: easy insertion of new doc IDs

– Variable length arrays: space efficient, cache friendly

• DF provides size of array of posting list; good for binary search

– Hence structure of choice for query optimization

16

Skip lists

• One linked list optimization in chapter 2 of Manning et al.:

Online edition (c) 2009 Cambridge UP

36 2 The term vocabulary and postings lists

! Figure 2.9 Postings lists with skip pointers. The postings intersection can use a
skip pointer when the end point is still less than the item on the other list.

2.3 Faster postings list intersection via skip pointers

In the remainder of this chapter, we will discuss extensions to postings list
data structures and ways to increase the efficiency of using postings lists. Re-
call the basic postings list intersection operation from Section 1.3 (page 10):
we walk through the two postings lists simultaneously, in time linear in the
total number of postings entries. If the list lengths are m and n, the intersec-
tion takes O(m + n) operations. Can we do better than this? That is, empiri-
cally, can we usually process postings list intersection in sublinear time? We
can, if the index isn’t changing too fast.

One way to do this is to use a skip list by augmenting postings lists withSKIP LIST

skip pointers (at indexing time), as shown in Figure 2.9. Skip pointers are
effectively shortcuts that allow us to avoid processing parts of the postings
list that will not figure in the search results. The two questions are then where
to place skip pointers and how to do efficient merging using skip pointers.

Consider first efficient merging, with Figure 2.9 as an example. Suppose

we’ve stepped through the lists in the figure until we have matched 8 on
each list and moved it to the results list. We advance both pointers, giving us

16 on the upper list and 41 on the lower list. The smallest item is then the

element 16 on the top list. Rather than simply advancing the upper pointer,
we first check the skip list pointer and note that 28 is also less than 41. Hence
we can follow the skip list pointer, and then we advance the upper pointer

to 28 . We thus avoid stepping to 19 and 23 on the upper list. A number
of variant versions of postings list intersection with skip pointers is possible
depending on when exactly you check the skip pointer. One version is shown

• Check skip link if present to skip multiple entries

• Heuristic for skip placement in list of length L:

– Evenly space
√
L skip links

17

Pros/cons of Boolean model

• Boolean retrieval contrasts with “Ranked retrieval” approaches

– Structured versus unstructured queries

– Recall versus precision: Boolean can easily over-specify query,

resulting in no returned results (rare in current search engines)

– Returning nothing not as useful for query reformulation

• Expert users often prefer Boolean systems to ranked retrieval

– User feels like they have more control of system behavior

– Validation of the expertise of the user: librarian, analysts, etc.

• Represents a big divide between “classical” and “modern” IR

18

Classical vs. Modern IR

• Back in the day

– Highly trained professional system users (librarians, analysts)

– Computers and data transmission were slow and expensive

∗ e.g., many systems charged a per-query fee

– Users typically had well-defined information needs

• Today

– Typical users are not professionals, i.e., untrained

– Computers are fast and basically free

– Information needs are often much less well-defined

∗ “what TV should I buy”

∗ “cases on employment law involving trade secret disclosures in the semi-

conductor industry in which the plaintiff blah blah blah”

19

Extended Boolean model

• Boolean model just supports AND, OR, NOT and presence/absence

• Ultimately want free-text queries of the sort we know and love

– More complicated queries: collocations, “proximity”

• Also some kind of ranking model to sort resulting documents

• Extended Boolean model takes term weighting into account

– How often does the term occur in the particular document?

– Is that frequency surprising given distribution of term?

• Requires storing more information in index

– Which can also permit positional queries (“within three words”)

20

Positional indices

• Augment inverted indices with positions of each token:

word, DF: 〈 docID, TF: 〈pos1, pos2, ... , posk〉; ... 〉

Online edition (c) 2009 Cambridge UP

2.4 Positional postings and phrase queries 41

to, 993427:
〈 1, 6: 〈7, 18, 33, 72, 86, 231〉;

2, 5: 〈1, 17, 74, 222, 255〉;
4, 5: 〈8, 16, 190, 429, 433〉;
5, 2: 〈363, 367〉;
7, 3: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1, 2: 〈17, 25〉;

4, 5: 〈17, 191, 291, 430, 434〉;
5, 3: 〈14, 19, 101〉; . . . 〉

! Figure 2.11 Positional index example. The word to has a document frequency
993,477, and occurs 6 times in document 1 at positions 7, 18, 33, etc.

2.4.2 Positional indexes

For the reasons given, a biword index is not the standard solution. Rather,
a positional index is most commonly employed. Here, for each term in thePOSITIONAL INDEX

vocabulary, we store postings of the form docID: 〈position1, position2, . . . 〉,
as shown in Figure 2.11, where each position is a token index in the docu-
ment. Each posting will also usually record the term frequency, for reasons
discussed in Chapter 6.

To process a phrase query, you still need to access the inverted index en-
tries for each distinct term. As before, you would start with the least frequent
term and then work to further restrict the list of possible candidates. In the
merge operation, the same general technique is used as before, but rather
than simply checking that both terms are in a document, you also need to
check that their positions of appearance in the document are compatible with
the phrase query being evaluated. This requires working out offsets between
the words.

✎ Example 2.1: Satisfying phrase queries. Suppose the postings lists for to and
be are as in Figure 2.11, and the query is “to be or not to be”. The postings lists to access
are: to, be, or, not. We will examine intersecting the postings lists for to and be. We
first look for documents that contain both terms. Then, we look for places in the lists
where there is an occurrence of be with a token index one higher than a position of to,
and then we look for another occurrence of each word with token index 4 higher than
the first occurrence. In the above lists, the pattern of occurrences that is a possible
match is:

to: 〈. . . ; 4:〈. . . ,429,433〉; . . . 〉
be: 〈. . . ; 4:〈. . . ,430,434〉; . . . 〉

• Much larger (but optimizations to come); intersection also more expensive

21

What do positional indices buy us?

• Proximity-based queries

– employment \3 place (within three words on either side)

– “New York”; “Hong Kong”; “Steven Bedrick”

(without having to include these n-grams in the index itself)

– Algorithms in Manning et al. text (offset arithmetic req’d)

• Have term frequency available, for term weighting

– Obviates the need for explicit stop-word list creation

– Provides the means for assessing query relevance of match

22

Ranking retrieval results

• Huge topic, one we’ll return to a lot over the course

• Key intuition:

a document that frequently mentions a query term should probably

be ranked higher than a document that only mentions it once

• However, not every query term is equally important

– Closed-class words (‘the’, ‘of’, ...) in most English documents

– Corpus-specific frequent terms have similar problems

∗ e.g., “auto” in a corpus related to cars; “brain” or “cell” in

neuroscience articles

• Must also consider the document frequency of a term

23

TF*IDF

• TF=term frequency; IDF=inverse document frequency

• A start towards weighting terms: favor high TF, low DF

– Use DF rather than total count, less impacted by outliers

• In practice, IDF of term calculated as log N
DF for N documents

• Score of frequently occurring words severely penalized

• IDF can be seen as a kind of “expected document frequency”

• Favor terms occurring significantly more frequently that typical

– Other metrics (log likelihood or odds ratios) more directly

measure this

24

Ranking documents

• Given a query q and a document d, score the document by

summing tf-idf for every term t in q, i.e., in Manning et al.:

Score(q, d) =
∑

t∈q

tf-idft,d (6.9)

• This formulation allows for alternatives to tf-idf

– e.g., vector space models, to be covered next lecture

• Methods still depend on key initial questions:

– What is a document?

– What is a term?

25

Terms and documents

• Chapter 2 of Manning et al. covers important issues in defining

“documents” (unit of retrieval) and “terms” in vocabulary

• Many issues that we deal with in other courses

– Document format normalization (mapping to text sequences)

– Language identification

– Tokenization and segmentation

– Term normalization (e.g., de-casing, stemming, lemmatization)

• Mapping to an internal representation:

Consistent normalization more important than human readability

26

Many non-English phenomena

• Ordering of characters within script, e.g., Arabic diacritics

Online edition (c) 2009 Cambridge UP

2.1 Document delineation and character sequence decoding 21

 ك ِ ت ا ب ٌ ⇐ آَِ%#بٌ
 un b ā t i k
/kitābun/ ‘a book’

! Figure 2.1 An example of a vocalized Modern Standard Arabic word. The writing
is from right to left and letters undergo complex mutations as they are combined. The
representation of short vowels (here, /i/ and /u/) and the final /n/ (nunation) de-
parts from strict linearity by being represented as diacritics above and below letters.
Nevertheless, the represented text is still clearly a linear ordering of characters repre-
senting sounds. Full vocalization, as here, normally appears only in the Koran and
children’s books. Day-to-day text is unvocalized (short vowels are not represented
but the letter for ā would still appear) or partially vocalized, with short vowels in-
serted in places where the writer perceives ambiguities. These choices add further
complexities to indexing.

 . =>;> ;: ا7/89ل ا+5&34$132 012 1962ا#/.-, ا+*(ا'& %$ #"!

 ← → ← → ← START

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

! Figure 2.2 The conceptual linear order of characters is not necessarily the order
that you see on the page. In languages that are written right-to-left, such as Hebrew
and Arabic, it is quite common to also have left-to-right text interspersed, such as
numbers and dollar amounts. With modern Unicode representation concepts, the
order of characters in files matches the conceptual order, and the reversal of displayed
characters is handled by the rendering system, but this may not be true for documents
in older encodings.

are many cases in which you might want to do something different. A tra-
ditional Unix (mbox-format) email file stores a sequence of email messages
(an email folder) in one file, but you might wish to regard each email mes-
sage as a separate document. Many email messages now contain attached
documents, and you might then want to regard the email message and each
contained attachment as separate documents. If an email message has an
attached zip file, you might want to decode the zip file and regard each file
it contains as a separate document. Going in the opposite direction, various
pieces of web software (such as latex2html) take things that you might regard
as a single document (e.g., a Powerpoint file or a LATEX document) and split
them into separate HTML pages for each slide or subsection, stored as sep-
arate files. In these cases, you might want to combine multiple files into a
single document.

More generally, for very long documents, the issue of indexing granularityINDEXING

GRANULARITY arises. For a collection of books, it would usually be a bad idea to index an

(complicated by, e.g., numbers)

• Tokenization of nominal compounds in German:

Lebensversicherungsgesellschaftsangestellter

“life insurance company employee”

• Word segmentation in East Asian Languages, e.g., Chinese:

Online edition (c) 2009 Cambridge UP

26 2 The term vocabulary and postings lists

! Figure 2.3 The standard unsegmented form of Chinese text using the simplified
characters of mainland China. There is no whitespace between words, not even be-
tween sentences – the apparent space after the Chinese period (◦) is just a typograph-
ical illusion caused by placing the character on the left side of its square box. The
first sentence is just words in Chinese characters with no spaces between them. The
second and third sentences include Arabic numerals and punctuation breaking up
the Chinese characters.

! Figure 2.4 Ambiguities in Chinese word segmentation. The two characters can
be treated as one word meaning ‘monk’ or as a sequence of two words meaning ‘and’
and ‘still’.

a an and are as at be by for from
has he in is it its of on that the
to was were will with

! Figure 2.5 A stop list of 25 semantically non-selective words which are common
in Reuters-RCV1.

in Section 2.5). Since there are multiple possible segmentations of character
sequences (see Figure 2.4), all such methods make mistakes sometimes, and
so you are never guaranteed a consistent unique tokenization. The other ap-
proach is to abandon word-based indexing and to do all indexing via just
short subsequences of characters (character k-grams), regardless of whether
particular sequences cross word boundaries or not. Three reasons why this
approach is appealing are that an individual Chinese character is more like a
syllable than a letter and usually has some semantic content, that most words
are short (the commonest length is 2 characters), and that, given the lack of
standardization of word breaking in the writing system, it is not always clear
where word boundaries should be placed anyway. Even in English, some
cases of where to put word boundaries are just orthographic conventions –
think of notwithstanding vs. not to mention or into vs. on to – but people are
educated to write the words with consistent use of spaces.

27

Normalization

• Mapping of multiple terms to a single class

• Case-folding is an obvious case: both This and this are the same

• Prefer easy, deterministic transforms, e.g., remove hyphens or

punctuation: U.S.A. → USA; Case-folding → Casefolding

• Map symbols with diacritics to the base symbol without

• Date and number normalization

• Stemming and lemmatization (rules for mapping term classes)

– e.g., Porter stemmer suffix rule in English: ies → i

thus ponies → poni (correct root ‘pony’ also maps to ‘poni’)

• Doesn’t matter that the mapping is wrong (internal representation)

28

What have we covered

• Figure out your terms and your ‘document’ granularity

– Variously complex pre-processing required

• Simple Boolean term-document matrix

• Sparse matrix representation → inverted index

• Merge algorithm for intersection postings list

• Optimizing queries and structures: binary search and skip lists

• Extended Boolean model: keep DF, TF and offsets

– positional indices

• Calculate tf-idf (or other scores) and rank retrieval results

29

Next week

• IR Models

– Vector space models

– Language models

• Index construction/optimization/compression

30

