FUNDAMENTALS OF DATA VISUALIZATION

Color

"... and please let Mom, Dad, Rex, Ginger, Tucker, me and all the rest of the family see color."

The Far Side, Gary Larson

Image from Adelson, MIT

POP QUIZ, HOTSHOT

A IS LIGHTER THAN B
B IS LIGHTER THAN A
A AND B ARE THE SAME
JUST TELL ME, ALLRIGHT?

Image from Colin Ware

Color names if you're a girl...

Color names if you're a guy...

Doghouse Diaries "We take no as an answer."

Actual color names Actual color names if you're a girl ... if you're a guy ...

Image from the most excellent xkcd.com

WHAT IS COLOR?

Physics	Biology	Visual System	Mental Models
Light Energy	Cone Response	Opponent Encoding	Perceptual Models
Wavelength	L, M, S	L, R-G, Y-B	Color perception

THE HUMAN EYE

SMALL FREQUENCY RANGE

HUGE LUMINANCE RANGE

Image from where else? Wikipedia!

Wavelength (nanometers)

Image from Stone: A Guide to Digital Color

By Spigget - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9022748

Image from http://ideas.etublogs.usj.edu.lb/

Colin Ware

1. Trichromatic Stage

Trichromatic cone cells respond positively to one of three frequencies exhibited by photons arriving on their surface.

2. Opponent Process Stage

The three color channels are discovered by nearby opponent cells.

Opponent cells tuned to luminosity are excited by the red, green, and blue color signals.

Cg cells are excited by red and blue and inhibited by green. Cb cells are excited by red and green and inhibited by blue.

- Luminance (L): Sum of Red and Green
- Red Green: Difference between Red and Green
- Yellow Blue: Difference between L and Blue

THE RETINA & COLOR

- 1) SPATIAL COMPRESSION
- 2) ADJUST LUMINANCE RANGE TO NERVE S/N
- **3) EXTRACT REFLECTANCE (COLOR)**

Image surprisingly from Commonwealth of Australia

Who in the rainbow can draw the line where the violet tint ends and the orange tint begins? Distinctly we see the difference of the colors, but where exactly does the one first blendingly enter into the other? So with sanity and insanity.

—Herman Melville, Billy Budd

Image from Wikipedia

Image from Wikipedia

GOOGLE THIS IS NOT YELLOW

REAL WORLD: 570 NM

WHAT IS YELLOW?

SCREEN: ADDITIVE (R+G)

PRINT: SUBTRACTIVE

Photo: Andrew Bain

SOME COLOR ODDITIES

http://visual.ly/color-emotion-guide

RULE OF THUMB

COLOR: FORM & FUNCTION QUALITATIVE

LUMINESCENCE: DEPTH SLIGHTLY QUANTITATIVE

Image from the most excellent exck.com

USING COLOR

Image from the most excellent exck.com

NOMINAL

Colin Ware

ORDINAL

ORDINAL / SEQUENTIAL

DIVERGENT

SEQUENTIAL

Zeilis et al 2009

SEPARABLE INTEGRAL

Zeilis et al 2009

DON'T DO THIS!

TARBA ARGANARALIZARION ARABES (DIGONDARE)

Avoid color-blind combinations:

backstound on vice versa is best

Red and green

- Blue and yellow

CHECK LUMINANCE & COLOR IN GRAYSCALE

Hanspeter Pfister, quoting Stone

Colin Ware – Maps in B&W Beware! Fig 3.8

https://color.adobe.com/create/color-wheel/

https://color.adobe.com/create/color-wheel/

HTTP://WWW.COLOR-BLINDNESS.COM

HTTP://WWW.VISCHECK.COM/

HTTP://COLOR.ADOBE.COM

COLOR ABUSE

Image from Colin Ware

From the 1st lecture!

Jim Wahl, 2014

COLOR USE: QUASI QUANT

Image from Colin Ware

HUE: Dobson Units Dobson Units **SKITTLES** Units n n Dobson Dobson **BIVARIANT**

LUMINESCENCE

HUE + LUMINESCENCE

HUE:

Rogowitz and Treinish, Why should engineers and scientists be worried about color?

COLOR USE: FIELD NORMS

Image from Colin Ware

By Opabinia regalis (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

What's your field norm?

What's your field norm?

"AVOIDING CATASTROPHE

BECOMES THE FIRST

PRINCIPLE IN BRINGING

COLOR TO INFORMATION:

ABOVE ALL, DO NO HARM."

Tyte, Envisioning Information