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M.C. Escher, “Waterfall” https://en.wikipedia.org/wiki/File:Escher Waterfall.jpg
M.C. Escher, “Relativity” https://en.wikipedia.org/wiki/File:Escher%27s Relativity.jpg
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“If information is presented orally,
people remember about 10%...
That number goes up by 65% if
you add a picture.”

Paul Martin Lester

Jerome Bruner



Our toolbox starts with our eyes and
visual cortex.

http:/www.mu-sigma.com/uvnewsletter/links.html#a
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Objects most relevant to the
terns are built out task at hand are held in Visual
Features are processed features dependingon  Working Memory. Only between
in parallel from every part of the tentional demands. one and three are held at any

visual field. Millions of features Attentional tuning instant. Objects have both
are processed simultaneously. reinforces those most non-visual and visual attributes.
relevant.

rformatiox es pattern building

tional processes reinforce relevant information

Stolen shamelessly from Ware, et al.



Certain visual inputs are processed
almost instantaneously, and in parallel:

s there a red circle present?

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Certain visual inputs are processed
almost instantaneously, and in parallel:

s there a boundary?

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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This “pre-attentive” perception happens
very early in the vision pathway.

Objects most relevant to the
Patterns are built out task at hand are held in Visual

Features are processed of features depending on ~ Working Memory. Only between
in parallel from every part of the  attentional demands. one and three are held at any
visual field. Millions of features Attentional tuning instant. Objects have both

are processed simultaneously. reinforces those most non-visual and visual attributes.

relevant.

Bottom-up information drives pattern building -
.gjn attentional processes reinforce relevant information




A pre-attentive task takes the same amount of
time irrespective of the number of distractors.
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Interestingly, this only works when the
distractors differ on the same feature:

s there a red circle present?

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Interestingly, this only works when the
distractors differ on the same feature:

We must fall back on linear scanning
when there is a “conjunction” of features.

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Interestingly, this only works when the
distractors differ on the same feature:

°
s there a boundary? (hint: yes!)

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Color and shape are only a few of the

pre-attentive visual properties:
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operate independently)

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Note that these various features are not
created equall!

We seem to have a strong bias towards color
perception over shape perception, etc..

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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What does all of this mean?



1. Certain tasks that depend on pre-
attentive features can sometimes be done
“for free” by our brains:

larget detection  Boundary detection

Region tracking ~ Counting (estimation)

2. The more of our story we can tell using
pre-attentive features, the faster and
better our viewer will “get it.”



3. We can easily mess up our viewer’s
ability to interpret our visualization by
“triggering” pre-attentive perception
inappropriately!

Many of the things that make a bad
visualization “bad” can be traced back to
problems in this area!



Another perspective: Gestalt perception

“Gestalt”:

“An orqganized whole that 1s perceived as more than
the sum of its parts.” (Ox. Am. Dict.)

Possibly a mis-translation?

“The whole is other than the sum of its parts.”
— Kurt Koffka (1886-1941)



The basic idea:

Our brains operate less on individual
points, lines, etc....

... but rather on higher-level constructs...

... which is what our perceptual systems
are optimized for.
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“Gestalt Principles” (Pragnanz):

To make sense of the world around us, our
brains use several different heuristics:

Proximity
. Similarity

1.

2

3. Closure
4. Symmetry
5. Continuation
6

. Figure & Ground



Proximity:

Stimuli that are in proximity to one another
are perceived to be grouped together.
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https://en.wikipedia.org/wiki/Gestalt psychology#mediaviewer/File:Gestalt proximity.svg
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Similarity:

Elements are grouped together if they are
similar to one another.
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http:/blog.templatemonster.com/2012/03/15/gestalt-similarity-law-templatemonster-templates/

https://en.wikipedia.org/wiki/Gestalt psychology#mediaviewer/File:Gestalt similarity.svg
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Closure:

We see complete shapes in incomplete
contexts.
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Symmetry:
We naturally group things by central symmetry.
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How many groups of elements are there?



Continuation

We try to follow the “simplest” path for
connected/continuing elements:
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Goldsein’s Sensation & Perception, Fig. 4.7
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Figure & Ground

We try and separate a figure from its
background.
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In summary:

Our brains take lots of perceptual
“shortcuts”...

... which can either help or harm our
visualizations!

KNOWLEDGE IS POWER.



Let’s get a bit more practical...



“The purpose of visualization
is insight, not pictures.”

Vo |

Ben Shneiderman
1947—-

“Graphics, charts, and maps
aren’t just tools to be seen, but
to be read and scrutinized.”

Alberto Cairo
1974—

Card, Mackinlay, Shneiderman, Readings in Information Visualization. Academic Press, 1999 Cairo, The Functional Art. Peachpit Press, 2013
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Visualizations support several basic tasks:

Presenting

“What variables and dimensions are we talking about?”

Enabling comparisons

“Is this quantity over here different from that quantity over there?”

Organizing
“Which things are grouped with what other things?”

Showing relationships

“Which other variables are linked/related to this variable?”



Different visualizations might have different
pUrposes:

Data processing: to facilitate intensive, detailed analysis of data

Communication of information resulting from an analysis.

The former entails comprehensivity; the latter
necessitates abstraction & simplification.

Jaques Bertin
1918-2010

Bertin, Semiology of Graphics. ESRI Press ed., 2010



Let’s get a bit more practical...



A visualization is made up of several
basic graphical primitives:

“Marks:”
O R A Points

........ LInes

() Areas

Volumes




The second category of tools are the
basic graphical primitives:

“Attributes of marks:”

. ocation Texture
Orientation Motion/Animation?
Size Interactivity?

Color

Can you think of more?



Graphical primitives are not created equal!
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In other words:

Humans are better at telling that one line is
twice as long as another line...

... than they are at telling that one square is
twice as red as another square.

Therefore: using attributes from the bottom of
the hierarchy for quantitative interpretation is
probably a bad idea!



Area is another tricky one:

Top 3 banks Top 3 banks Top 3 banks

44% 19% 44%

In The New York Times Actual percentages of Correct diagram of
The New York Times diagrams The New York Times data

This is why so many people are anti-pie-chart!

“Designing Information”, by Joel Katz, p.85



And, context matters a lot!

Length is usually a very accurate choice...

Except when it isn’t!



And, context matters a lot!

The black bars differ in absolute length exactly as
much as do the white bars...

William S Cleveland RM. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association. 1984;79(387):531-54.



Also, context matters a lot!

... but the white bars are relatively more different, and
so the difference is more apparent (Weber’s Law).

William S Cleveland RM. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association. 1984;79(387):531-54.



Graphical primitives are not created equal!

More Posit
Accurate silliomn
®
Length
Angle Slope
L L -
Area
o @
Color Density
L ess O

Accurate

Modified from Hearst’s interpretation of Mackinlay 88



Graphical Perception: Theory, Experimentation,
and Application to the Development of

WILLIAM §. CLEVELAND and ROBERT McGILL*

Graphical Methods

The subject of graphical methods for data analysis and
for data presentation needs a scientific foundation. In this
article we take a few steps in the direction of establishing
such a foundation. Our approach is based on graphical
perception—the visual decoding of information encoded
on graphs—and it includes both theory and experimen-
tation to test the theory. The theory deals with a small
but important piece of the whole process of graphical
perception. The first part is an identification of a set of
elementary perceptual tasks that are carried out when
people extract quantitative information from graphs. The
second part is an ordering of the tasks on the basis of
how accurately people perform them. Elements of the
theory are tested by experimentation in which subjects
record their judgments of the quantitative information on
graphs. The experiments validate these elements but also
suggest that the set of elementary tasks should be ex-
panded. The theory provides a guideline for graph con-
struction: Graphs should employ elementary tasks as high
in the ordering as possible. This principle is applied to a
variety of graphs, including bar charts, divided bar charts,
pie charts, and statistical maps with shading. The con-
clusion is that radical surgery on these popular graphs is
needed, and as replacements we offer alternative graph-
ical forms—dot charts, dot charts with grouping, and
framed-rectangle charts.

KEY WORDS: Computer graphics; Psychophysics.

1. INTRODUCTION

Nearly 200 years ago William Playfair (1786) began the
serious use of graphs for looking at data. More than 50
years ago a battle raged on the pages of the Journal of
the American Statistical Association about the relative
merits of bar charts and pie charts (Eells 1926; Croxton
1927; Croxton and Stryker 1927; von Huhn 1927). Today
graphs are a vital part of statistical data analysis and a
vital part of communication in science and technology,
business, educatior b

Still, graph desig
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largely unscientific. This is why Cox (1978) argued,
‘“There is a major need for a theory of graphical methods’’
(p. 5), and why Kruskal (1975) stated ‘‘in choosing, con-
structing, and comparing graphical methods we have little
to go on but intuition, rule of thumb, and a kind of master-
to-apprentice passing along of information. . . . there is
neither theory nor systematic body of experiment as a
guide” (p. 28-29).

There is, of course, much good common sense about
how to make a graph. There are many treatises on graph
construction (e.g., Schmid and Schmid 1979), bad prac-
tice has been uncovered (e.g., Tufte 1983), graphic de-
signers certainly have shown us how to make a graph
appealing to the eye (e.g., Marcus et al. 1980), statisti-
cians have thought intensely about graphical methods for
data analysis (e.g., Tukey 1977; Chambers et al. 1983),
and cartographers have devoted great energy to the con-
struction of statistical maps (Bertin 1973; Robinson, Sale,
and Morrison 1978). The ANSI manual on time series
charts (American National Standards Institute 1979) pro-
vides guidelines for making graphs, but the manual ad-
mits, ““This standard ... sets forth the best current
usage, and offers standards ‘by general agreement’ rather
than ‘by scientific test’’” (p. iii).

In this article we approach the science of graphs
through human graphical perception. Our approach in-
cludes both theory and experimentation to test it.

The first part of the theory is a list of elementary per-
ceptual tasks that people perform in extracting quanti-
tative information from graphs. In the second part we
hypothesize an ordering of the elementary tasks based
on how accurately people perform them. We do not argue
that this accuracy of quantitative extraction is the only
aspect of a graph for which one might want to develop a
theory, but it is an important one.

The theory is testable; we use it to predict the relative
performance of competing graphs, and then we run ex-
periments to check the actual performance. The experi-

TYPE 2

100 - 1001

0- o

10 Basic Perceptual Tasks:

.Position along common scale

1
2.Position along non-aligned scales
3

Length

4 .Direction
5.Angle

6.Area
7.Volume

Q (1rimvAatiiroe

TYPE 3 TYPE 4 TYPE 5

100 - 1001
F .
- 0 - o4
= EER———

William S Cleveland RM. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association. 1984;79(387):531-54.
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and Application to the Development of
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WILLIAM S. CLEVELAND and ROBERT McGILL*

The subject of graphical methods for data analysis and
for data presentation needs a scientific foundation. In this
article we take a few steps in the direction of establishing
such a foundation. Our approach is based on graphical
perception—the visual decoding of information encoded
on graphs—and it includes both theory and experimen-
tation to test the theory. The theory deals with a small
but important piece of the whole process of graphical
perception. The first part is an identification of a set of
elementary perceptual tasks that are carried out when
people extract quantitative information from graphs. The
second part is an ordering of the tasks on the basis of
how accurately people perform them. Elements of the
theory are tested by experimentation in which subjects
record their judgments of the quantitative information on
graphs. The experiments validate these elements but also
suggest that the set of elementary tasks should be ex-
panded. The theory provides a guideline for graph con-
struction: Graphs should employ elementary tasks as high
in the ordering as possible. This principle is applied to a
variety of graphs, including bar charts, divided bar charts,
pie charts, and statistical maps with shading. The con-
clusion is that radical surgery on these popular graphs is
needed, and as replacements we offer alternative graph-
ical forms—dot charts, dot charts with grouping, and
framed-rectangle charts.

KEY WORDS: Computer graphics; Psychophysics.

1. INTRODUCTION

Nearly 200 years ago William Playfair (1786) began the
serious use of graphs for looking at data. More than 50
years ago a battle raged on the pages of the Journal of
the American Statistical Association about the relative
merits of bar charts and pie charts (Eells 1926; Croxton
1927; Croxton and Stryker 1927; von Huhn 1927). Today
graphs are a vital part of statistical data analysis and a
vital part of communication in science and technology,
business, education, and the mass media.

Still, graph design for data analysis and presentation is

* William S. Cleveland and Robert McGill are statisticians at AT&T
Bell Laboratories, Murray Hill, NJ 07974. The authors are indebted to
John Chambers, Ram Gnanadesikan, David Krantz, William Kruskal,
Colin Mallows, Frederick Mosteller, Henry Pollak, Paul Tukey, and the
JASA reviewers for important comments on an earlier version of this
article.
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Key finding: accuracy of interpretation of a graph varies greatly
depending on the type of judgment and type of graph.

William S Cleveland RM. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association. 1984;79(387):531-54.



Cleveland & McGill’s Results
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Cleveland WS, Diaconis P, McGill R. Variables on Scatterplots Look More Highly Correlated When the Scales Are Increased. Science; 1982;216(4550):1138-41.
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Fig. 1. Reductions of two scatterplots used in the three types of experiments. The left panel is point-cloud size 2 and the right panel is point-cloud

B m

Pop Quiz: Why does this happen?

Cleveland WS, Diaconis P, McGill R. Variables on Scatterplots Look More Highly Correlated When the Scales Are Increased. Science; 1982;216(4550):1138-41.
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That's no error. The eye of Hurricane #Matthew
went right over a weather observation buoy in
the middle of the Caribbean

Wind Gust at 42058
Image Credit: NORR/NUS/NDBC
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Homework: find examples of both
positive and negative preattentive/
Gestalt behavior in a visualization.

Either find new ones, or re-evaluate
your existing +/- examples.



