
Preattentive properties & 
Gestalt perception

Jackie Wirz & Steven Bedrick & Alison Hill
CSE 631, 10/4/16



M.C. Escher, “Waterfall” https://en.wikipedia.org/wiki/File:Escher_Waterfall.jpg
M.C. Escher, “Relativity” https://en.wikipedia.org/wiki/File:Escher%27s_Relativity.jpg
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“If information is presented orally, 
people remember about 10%... 
That number goes up by 65% if 
you add a picture.”

Paul Martin Lester Jerome Bruner



Our toolbox starts with our eyes and 
visual cortex.

http://www.mu-sigma.com/uvnewsletter/links.html#a

http://www.mu-sigma.com/uvnewsletter/links.html#a
http://www.mu-sigma.com/uvnewsletter/links.html#a


Stolen shamelessly from Ware, et al.



Certain visual inputs are processed 
almost instantaneously, and in parallel:

Is there a red circle present?

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Certain visual inputs are processed 
almost instantaneously, and in parallel:

Is there a boundary?
Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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This “pre-attentive” perception happens 
very early in the vision pathway.
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A pre-attentive task takes the same amount of 
time irrespective of the number of distractors.



Interestingly, this only works when the 
distractors differ on the same feature:

Is there a red circle present?

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Interestingly, this only works when the 
distractors differ on the same feature:

We must fall back on linear scanning 
when there is a “conjunction” of features.

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Interestingly, this only works when the 
distractors differ on the same feature:

Is there a boundary? (hint: yes!)
Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Color and shape are only a few of the 
pre-attentive visual properties:

Orientation Length Closure Size

Curvature Color
(hue & intensity

operate independently)

Terminators Intersection

Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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Note that these various features are not 
created equal!

We seem to have a strong bias towards color 
perception over shape perception, etc..
Taken from Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html
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What does all of this mean?



1. Certain tasks that depend on pre-
attentive features can sometimes be done 
“for free” by our brains:

Target detection Boundary detection

Region tracking Counting (estimation)

2. The more of our story we can tell using 
pre-attentive features, the faster and 
better our viewer will “get it.”



3. We can easily mess up our viewer’s 
ability to interpret our visualization by 
“triggering” pre-attentive perception 
inappropriately!

Many of the things that make a bad 
visualization “bad” can be traced back to 
problems in this area!



Another perspective: Gestalt perception

“Gestalt”:

“An organized whole that is perceived as more than 
the sum of its parts.” (Ox. Am. Dict.)

Possibly a mis-translation?
“The whole is other than the sum of its parts.”
 — Kurt Koffka (1886–1941)



The basic idea:

Our brains operate less on individual 
points, lines, etc....

... but rather on higher-level constructs...

... which is what our perceptual systems 
are optimized for.



We immediately see “triangle!”, not 
“circles with wedges removed...”



We don’t see “leg”, “ear”, etc., but 
rather “entire dog”.



“Gestalt Principles” (Prägnanz):

1. Proximity

2. Similarity

3. Closure

4. Symmetry

5. Continuation

6. Figure & Ground

To make sense of the world around us, our 
brains use several different heuristics:



Proximity:

Stimuli that are in proximity to one another 
are perceived to be grouped together.

https://en.wikipedia.org/wiki/Gestalt_psychology#mediaviewer/File:Gestalt_proximity.svg
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Similarity:

Elements are grouped together if they are 
similar to one another.

https://en.wikipedia.org/wiki/Gestalt_psychology#mediaviewer/File:Gestalt_similarity.svg
http://blog.templatemonster.com/2012/03/15/gestalt-similarity-law-templatemonster-templates/
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Closure:

We see complete shapes in incomplete 
contexts.

https://en.wikipedia.org/wiki/Gestalt_psychology#mediaviewer/File:Gestalt_closure.svg

https://en.wikipedia.org/wiki/File:Escher_Waterfall.jpg
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Symmetry:

We naturally group things by central symmetry.

[       ]{        }[      ]

How many groups of elements are there?



Continuation

We try to follow the “simplest” path for 
connected/continuing elements:

Goldsein’s Sensation & Perception, Fig. 4.7

https://en.wikipedia.org/wiki/File:Escher_Waterfall.jpg
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Figure & Ground

We try and separate a figure from its 
background.



https://yusylvia.wordpress.com/tag/gestalt/

https://yusylvia.files.wordpress.com/2010/03/gestalt_illustration-01.jpg
https://yusylvia.files.wordpress.com/2010/03/gestalt_illustration-01.jpg


In summary:

Our brains take lots of perceptual 
“shortcuts”...

... which can either help or harm our 
visualizations!

KNOWLEDGE IS POWER.



Let’s get a bit more practical...



“The purpose of visualization 
is insight, not pictures.”

Ben Shneiderman
1947–

Card, Mackinlay, Shneiderman, Readings in Information Visualization. Academic Press,1999 Cairo, The Functional Art. Peachpit Press, 2013

“Graphics, charts, and maps 
aren’t just tools to be seen, but 
to be read and scrutinized.”

Alberto Cairo
1974–



http://www.mu-sigma.com/uvnewsletter/links.html#a
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Visualizations support several basic tasks:

Presenting
“What variables and dimensions are we talking about?”

Enabling comparisons
“Is this quantity over here different from that quantity over there?”

Organizing
“Which things are grouped with what other things?”

Showing relationships
“Which other variables are linked/related to this variable?”



Different visualizations might have different 
purposes:

Data processing: to facilitate intensive, detailed analysis of data

Communication of information resulting from an analysis.

Bertin, Semiology of Graphics. ESRI Press ed., 2010

Jaques Bertin
1918–2010

The former entails comprehensivity; the latter 
necessitates abstraction & simplification.



Let’s get a bit more practical...



A visualization is made up of several 
basic graphical primitives:

“Marks:”

Points

Lines

Areas

Volumes



The second category of tools are the 
basic graphical primitives:

“Attributes of marks:”

Location

Orientation

Size
Color

Texture

Motion/Animation?

Interactivity?

Can you think of more?



Graphical primitives are not created equal!

Modified from Hearst’s interpretation of Mackinlay ’88

Less
Accurate

More
Accurate Position

Length

Angle Slope

Area

Color Density



Accuracy: Fundamental Theory

36

Figure from Tamara Munzer (CC-BY-SA): http://www.cs.ubc.ca/~tmm/talks/minicourse14/vad16act.pdf, after Stevens, S.S. (1957). "On the psychophysical law". Psychological Review. 64 (3): 153–181.

http://www.cs.ubc.ca/~tmm/talks/minicourse14/vad16act.pdf
http://www.cs.ubc.ca/~tmm/talks/minicourse14/vad16act.pdf


In other words:

Humans are better at telling that one line is 
twice as long as another line...

... than they are at telling that one square is 
twice as red as another square.

Therefore: using attributes from the bottom of 
the hierarchy for quantitative interpretation is 
probably a bad idea!



Area is another tricky one:
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Dimensional comparison

The more 
dimensions used 
in quantitative 
comparisons, the 
larger are the 
disparities that can 
be accommodated. 
As irony would have 
it, however, the 
ease of comparison 
generally 
diminishes in 
direct proportion 
to the number 
of dimensions 
involved. 

Like generations of identification, visual quantitative com-
parisons depend on a number of factors, among which are:

 the disparity in the quantities being compared;

the number of dimensions in the graphic being used for the 
comparison.

The more dimensions involved in a comparison, the harder 
the brain has to work to sort them out. Like conscious and 
unconscious decoding, graphic comparison solutions rep-
resent a balance between ease of comprehension and the 
need for the efficient use of space.

Read Werner Oechslin, Petra Lamers-Schutze. The First Six Books of The Ele-
ments of Euclid. The palette used in these illustrations is an homage to that 
book.

Edwin A. Abbott: Flatland: A Romance of Many Dimensions.

See also The pyramid paradox; Numerical integrity.

Point. Chaos; like a queue in Italy.

Line. When possible, excellent. 
Being for all intents one dimen-
sional, lines use a lot of real 
estate. 

Plane. Efficient. Being able to use 
two dimensions greatly reduces 
the need for excessive length in 
one dimension. Better than using 
squares or circles, however, would 
be, in a square or rectangle, 
adjacent bands that permit com-
parison in one dimension only, 
below, provided that the smallest 
quantity is identifiable.

Solid. Super efficient but 
extremely difficult to understand. 
The pyramid, particularly, defies 
intuitive estimates of volume (see 
the following spread).

A hybrid of line and plane, this 
variation of the planes at left 
shows comparisons in only one 
dimension. The single unit, how-
ever, is difficult to discern.

Sixth-grade math department. 
The left circle is a reconstruction 
of a diagram in The New York 
Times, showing market share 
among U.S. banks. Unfortunately, 
the graphic is incorrect, with the 
percentage relationships deter-
mined by diameter rather than by 
area (πr2).

The true percentages represented 
by The New York Times’s circles 
are shown in the center graphic; 
a graphic accurately representing 
the percentages is at the right.

“Designing Information”, by Joel Katz, p.85
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Point. Chaos; like a queue in Italy.

Line. When possible, excellent. 
Being for all intents one dimen-
sional, lines use a lot of real 
estate. 

Plane. Efficient. Being able to use 
two dimensions greatly reduces 
the need for excessive length in 
one dimension. Better than using 
squares or circles, however, would 
be, in a square or rectangle, 
adjacent bands that permit com-
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below, provided that the smallest 
quantity is identifiable.

Solid. Super efficient but 
extremely difficult to understand. 
The pyramid, particularly, defies 
intuitive estimates of volume (see 
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variation of the planes at left 
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ever, is difficult to discern.
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The left circle is a reconstruction 
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percentage relationships deter-
mined by diameter rather than by 
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The true percentages represented 
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are shown in the center graphic; 
a graphic accurately representing 
the percentages is at the right.This is why so many people are anti-pie-chart!



And, context matters a lot!

Length is usually a very accurate choice...

Except when it isn’t!



And, context matters a lot!

William S Cleveland RM. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association. 1984;79(387):531–54. 

The black bars differ in absolute length exactly as 
much as do the white bars...



Also, context matters a lot!

William S Cleveland RM. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association. 1984;79(387):531–54. 

... but the white bars are relatively more different, and 
so the difference is more apparent (Weber’s Law).



Graphical primitives are not created equal!

Modified from Hearst’s interpretation of Mackinlay ’88
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Angle Slope
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 Graphical Perception: Theory, Experimentation,

 and Application to the Development of

 Graphical Methods
 WILLIAM S. CLEVELAND and ROBERT McGILL*

 The subject of graphical methods for data analysis and
 for data presentation needs a scientific foundation. In this
 article we take a few steps in the direction of establishing
 such a foundation. Our approach is based on graphical
 perception-the visual decoding of information encoded
 on graphs-and it includes both theory and experimen-
 tation to test the theory. The theory deals with a small
 but important piece of the whole process of graphical
 perception. The first part is an identification of a set of
 elementary perceptual tasks that are carried out when
 people extract quantitative information from graphs. The
 second part is an ordering of the tasks on the basis of
 how accurately people perform them. Elements of the
 theory are tested by experimentation in which subjects
 record their judgments of the quantitative information on
 graphs. The experiments validate these elements but also
 suggest that the set of elementary tasks should be ex-
 panded. The theory provides a guideline for graph con-
 struction: Graphs should employ elementary tasks as high
 in the ordering as possible. This principle is applied to a
 variety of graphs, including bar charts, divided bar charts,
 pie charts, and statistical maps with shading. The con-
 clusion is that radical surgery on these popular graphs is
 needed, and as replacements we offer alternative graph-
 ical forms-dot charts, dot charts with grouping, and
 framed-rectangle charts.

 KEY WORDS: Computer graphics; Psychophysics.

 1. INTRODUCTION

 Nearly 200 years ago William Playfair (1786) began the
 serious use of graphs for looking at data. More than 50
 years ago a battle raged on the pages of the Journal of
 the American Statistical Association about the relative
 merits of bar charts and pie charts (Eells 1926; Croxton
 1927; Croxton and Stryker 1927; von Huhn 1927). Today
 graphs are a vital part of statistical data analysis and a
 vital part of communication in science and technology,
 business, education, and the mass media.

 Still, graph design for data analysis and presentation is

 * William S. Cleveland and Robert McGill are statisticians at AT&T
 Bell Laboratories, Murray Hill, NJ 07974. The authors are indebted to
 John Chambers, Ram Gnanadesikan, David Krantz, William Kruskal,
 Colin Mallows, Frederick Mosteller, Henry Pollak, Paul Tukey, and the
 JASA reviewers for important comments on an earlier version of this
 article.

 largely unscientific. This is why Cox (1978) argued,
 "There is a major need for a theory of graphical methods"
 (p. 5), and why Kruskal (1975) stated "in choosing, con-
 structing, and comparing graphical methods we have little
 to go on but intuition, rule of thumb, and a kind of master-
 to-apprentice passing along of information.... there is
 neither theory nor systematic body of experiment as a
 guide" (p. 28-29).

 There is, of course, much good common sense about
 how to make a graph. There are many treatises on graph
 construction (e.g., Schmid and Schmid 1979), bad prac-
 tice has been uncovered (e.g., Tufte 1983), graphic de-
 signers certainly have shown us how to make a graph
 appealing to the eye (e.g., Marcus et al. 1980), statisti-
 cians have thought intensely about graphical methods for
 data analysis (e.g., Tukey 1977; Chambers et al. 1983),
 and cartographers have devoted great energy to the con-
 struction of statistical maps (Bertin 1973; Robinson, Sale,
 and Morrison 1978). The ANSI manual on time series
 charts (American National Standards Institute 1979) pro-
 vides guidelines for making graphs, but the manual ad-
 mits, "This standard ... sets forth the best current
 usage, and offers standards 'by general agreement' rather
 than 'by scientific test'" (p. iii).

 In this article we approach the science of graphs
 through human graphical perception. Our approach in-
 cludes both theory and experimentation to test it.

 The first part of the theory is a list of elementary per-
 ceptual tasks that people perform in extracting quanti-
 tative information from graphs. In the second part we
 hypothesize an ordering of the elementary tasks based
 on how accurately people perform them. We do not argue
 that this accuracy of quantitative extraction is the only
 aspect of a graph for which one might want to develop a
 theory, but it is an important one.

 The theory is testable; we use it to predict the relative
 performance of competing graphs, and then we run ex-
 periments to check the actual performance. The experi-
 ments are of two types: In one, once the graphs are
 drawn, the evidence appears so strong that it is taken
 prima facie to have established the case. When a strong
 effect is perceived by the authors' eyes and brains, it is
 likely that it will appear to most other people as well. In

 ? Journal of the American Statistical Association
 September 1984, Volume 79, Number 387

 Applications Section

 531
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1.Position along common scale
2.Position along non-aligned scales
3.Length
4.Direction
5.Angle
6.Area
7.Volume
8.Curvature
9.Shading
10.Color Saturation

10 Basic Perceptual Tasks:

 534 Journal of the American Statistical Association, September 1984
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 Figure 4. Graphs from position-length experiment.

 tracted by perceiving position along a scale, in this case
 the horizontal axis. The y values can be perceived in a
 similar manner.

 The real power of a Cartesian graph, however, does

 not derive only from one's ability to perceive the x and

 y values separately but, rather, from one's ability to un-
 derstand the relationship of x and y. For example, in Fig-
 ure 7 we see that the relationship is nonlinear and see the
 nature of that nonlinearity. The elementary task that en-
 ables us to do this is perception of direction. Each pair

 of points on the plot, (xi, yi) and (xj, yj), with xi =$ Xj,
 has an associated slope

 (yj - y)(xj - xi).

 The eye-brain system is capable of extracting such a

 slope by perceiving the direction of the line segment join-

 ing (xi, yi) and (xj, yj). We conjecture that the perception
 of these slopes allows the eye-brain system to imagine
 a smooth curve through the points, which is then used to
 judge the pattern. For example, in Figure 7 one can per-
 ceive that the slopes for pairs of points on the left side
 of the plot are greater than those on the right side of the
 plot, which is what enables one to judge that the rela-
 tionship is nonlinear.

 That the elementary task of judging directions on a

 Cartesian graph is vital for understanding the relationship
 of x and y is demonstrated in Figure 8. The same x and
 y values are shown by paired bars. As with the Cartesian

 MURDER RATES, 1978
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 RE 12.1_
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 Figure 5. Statistical map with shading.
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 on how accurately people perform them. We do not argue
 that this accuracy of quantitative extraction is the only
 aspect of a graph for which one might want to develop a
 theory, but it is an important one.

 The theory is testable; we use it to predict the relative
 performance of competing graphs, and then we run ex-
 periments to check the actual performance. The experi-
 ments are of two types: In one, once the graphs are
 drawn, the evidence appears so strong that it is taken
 prima facie to have established the case. When a strong
 effect is perceived by the authors' eyes and brains, it is
 likely that it will appear to most other people as well. In
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Key finding: accuracy of interpretation of a graph varies greatly 
depending on the type of judgment and type of graph.
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 fes SL probe are seen to correspond.
 Similarly, correspondence was observed
 between v-fes SR homologous restriction
 fragments as determined by genomic
 blots of total cellular DNA and the isolat-

 ed human homolog of the GA/ST v-fes
 gene. The human v-fes homolog showed
 no detectable transforming activity when
 transfected to RAT-2 cells by means of a
 thymidine kinase selection system. Mo-
 lecularly cloned GA/ST FeSV were in-
 cluded as positive controls.

 The molecular cloning of human geno-
 mic sequences homologous to GA/ST
 FeSV v-fes is of particular interest be-
 cause (i) the c-fes gene is highly con-
 served and (ii) it is subject to frequent
 recombination with type C retrovirus
 sequences resulting in the generation of
 transforming viruses (7, 9). Virus iso-
 lates of this class of not only mammalian
 (feline) but also avian (chicken) origin
 contain related cellular derived trans-

 forming sequences (10). A common fea-
 ture of the major gene product of these
 recombinant transforming viruses is an
 associated tyrosine-specific protein ki-
 nase (11-13). In addition, the GA and ST
 FeSV gene products exhibit binding af-
 finity for a 150,000 molecular weight
 cellular phosphoprotein (12, 14) and
 transformation by these viruses leads to
 abolition of epidermal growth factor
 binding (15, 16) and production of a low
 molecular weight transforming growth
 factor (17).

 The finding of only a single genetic
 locus exhibiting significant homology
 with the GA and ST FeSV acquired
 sequences establishes that the highly re-
 lated transforming sequences within the
 genomes of these independently isolated
 viruses were originally derived from the
 same cellular gene. Conversely, molecu-
 lar probes specific for acquired cellular
 sequences represented within the Abel-
 son MuLV genome, an independent
 RNA transforming virus with associated
 protein kinase activity (11, 18), recog-
 nized different human DNA restriction

 fragments and lacked detectable homolo-
 gy with sequences represented within
 any of the three cosmid isolates (data not
 shown). Thus there must exist at least
 two independent loci within the human
 genome homologous to viral genes with
 associated tyrosine-specific protein ki-
 nase activities.

 The human carcinoma DNA cosmid

 library generated in our study provides a
 specific reagent for the molecular clon-
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 sequences. An important feature of this
 system is the presence of a functionally
 active thymidine kinase gene that allows
 for selection of minority populations of
 eukaryotic cells containing such cosmids
 after transfection. In addition, SV40
 DNA sequences situated in one of the
 cosmid arms have been shown to exert a

 positive influence on transcription in the
 p-globin system (6). If this sequence
 similarly influences expression of cellu-
 lar homologs of viral transforming genes,
 its presence may be important for identi-
 fication of the translational products of
 these sequences and a determination of
 their transforming potential.
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 reason is that numerical summaries can-

 not always portray data unambiguously.
 For example, the most common measure
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 tions of points can yield the same value
 of r, relations can be nonlinear, and a
 single value of (xi,yi) can radically alter r
 (2). A scatterplot can depict the relation
 between xi and yi more reliably than any
 single numerical measure. But the use of
 a graph opens the door for perceptual
 factors to enter into the analysis and
 interpretation of the data. Although a set
 of data has only one numerical value for
 a particular measure of association such
 as r, the judged association could change
 according to any one of a number of
 "display factors" such as the size of the
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 Variables on Scatterplots Look More Highly Correlated
 When the Scales Are Increased

 Abstract. Judged association between two variables represented on scatterplots
 increased when the scales on the horizontal and vertical axes were simultaneously
 increased so that the size of the point cloud within the frame of the plot decreased.
 Judged association was very differentfrom the correlation coefficient, r, which is the
 most widely used measure of association.
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 lated transforming sequences within the
 genomes of these independently isolated
 viruses were originally derived from the
 same cellular gene. Conversely, molecu-
 lar probes specific for acquired cellular
 sequences represented within the Abel-
 son MuLV genome, an independent
 RNA transforming virus with associated
 protein kinase activity (11, 18), recog-
 nized different human DNA restriction
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 Fig. 1. Reductions of two scatterplots used in the three types of experiments. The left panel is point-cloud size 2 and the right panel is point-cloud
 size 4. In both panels w(r) = .4 and r = .8.

 plotting character, the overall size of the
 display, the orientation of the point
 cloud within the frame, and the size of
 the point cloud within the frame. The last
 two factors are controlled by the scales
 of the vertical and horizontal axes in

 graphs with a plotting area of fixed size.
 To investigate how people judge asso-

 ciation from scatterplots and how dis-
 play factors affect their judgments, we
 did three experiments. Our subjects con-
 sisted of students in university courses in
 statistics, university faculty members in
 statistics and mathematics, and practic-
 ing statisticians in government and in-
 dustry.

 In the first experiment, 74 subjects
 viewed 19 scatterplots, all with 0 or
 positive correlation coefficients. The
 subjects were asked to judge linear asso-
 ciation on a scale from 0 (no linear
 association) to 100 (perfect linear associ-
 ation). The scatterplots in Fig. 1 are
 reductions of two of the stimuli from this

 experiment; the reader is invited to judge
 the association on these plots in order to
 understand the nature of the judgment
 task (3).

 We varied two factors: amount of as-

 sociation and point-cloud size. The size
 of the frame was kept fixed. There were
 ten levels of association; each scatterplot
 had a value of w(r) = 1 - Vl - 2
 equal to one of the values 0, .05, .1,
 .2, ..., .8, w(r) being another numeri-
 cal measure of linear association that

 goes from 0 to 1 as r goes from 0 to 1. An
 interpretation of w(r) in terms of the
 geometry of the point cloud will be given
 later; we used w(r) because it seemed,
 4 JUNE 1982

 a priori, closer to people's subjective
 scales than r. There were four point-
 cloud sizes; they are labeled 1 to 4, size 1
 being the smallest and size 4 the largest.
 For point-cloud size 3 there were ten
 scatterplots with the ten different values
 of w(r), and for each of the other sizes
 there were three scatterplots with values
 of w(r) equal to .1, .4, and .7.

 Each scatterplot had 200 points and a
 square frame with sides equal to 17.3 cm.
 In all cases the center of gravity of the
 point cloud was at the center of the
 frame. The values portrayed on the hori-
 zontal axis of the kth scatterplot, xi(k),
 for i = 1, ..., 200, and the values por-
 trayed on the vertical axis, yi(k), for
 i = 1, ..., 200, formed a bivariate su-
 pernormal point cloud (4) which ensured
 highly regular behavior: a linear relation,
 no peculiar points, and an elliptical ap-
 pearance. The major axis of each point
 cloud was the line y = x and the minor
 axis was the line y = -x.

 The minimum value portrayed on the
 two axes of all plots was 0 data units and
 the maximum value was 5.6, 7, 10, or 14
 data units. The length of each axis was
 17.3 cm; the four scale values were
 therefore .32, .40, .58, and .81 data units
 per centimeter. The effect of decreasing
 the scale was to increase the size of the

 point cloud within the frame.
 There were four orders of presentation

 of the 19 scatterplots with approximately
 one-fourth of the subjects judging each
 order. Two of the orders were random
 and the other two were the reverses of
 those.

 The scatterplots were presented in sta-

 pled booklets with 8/2 by 11 inch pages.
 First there were written instructions and

 sample scatterplots, then four trial plots
 that subjects judged; no feedback was
 given. Finally, there were the 19 experi-
 mental plots, each on a separate page.
 The subjects were asked to give their
 own subjective assessment of the
 amount of linear association, rather than
 to judge the correlation coefficient, and
 were asked not to look back or change
 old answers. It was suggested that they
 work reasonably quickly and that most
 people could comfortably make a single
 judgment within 15 seconds.

 Our data analyses made extensive use
 of 10 percent trimmed means (5), which
 are defined in the following way: Order
 the observations from smallest to larg-
 est; drop the largest 10 percent of the
 observations and the smallest 10 per-
 cent; take the arithmetic average of the
 remaining values. Ten percent trimmed
 means are robust estimates (6) because
 they are not distorted by a small fraction
 of outliers, and they are a compromise
 between arithmetic means, which are 0
 percent trimmed means, and medians,
 which are trimmed means close to the 50

 percent level. The standard errors of 10
 percent trimmed means can be computed
 from a formula given in (7).

 Judged association for each of the 19
 scatterplots was summarized by 10 per-
 cent trimmed means of the subjects'
 guesses divided by 100 (8). These values
 are plotted in Fig. 2 against the actual
 values of r for the 19 scatterplots; also
 portrayed are the standard errors of the
 trimmed means (9). The two curves are
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 one-fourth of the subjects judging each
 order. Two of the orders were random
 and the other two were the reverses of
 those.

 The scatterplots were presented in sta-

 pled booklets with 8/2 by 11 inch pages.
 First there were written instructions and

 sample scatterplots, then four trial plots
 that subjects judged; no feedback was
 given. Finally, there were the 19 experi-
 mental plots, each on a separate page.
 The subjects were asked to give their
 own subjective assessment of the
 amount of linear association, rather than
 to judge the correlation coefficient, and
 were asked not to look back or change
 old answers. It was suggested that they
 work reasonably quickly and that most
 people could comfortably make a single
 judgment within 15 seconds.

 Our data analyses made extensive use
 of 10 percent trimmed means (5), which
 are defined in the following way: Order
 the observations from smallest to larg-
 est; drop the largest 10 percent of the
 observations and the smallest 10 per-
 cent; take the arithmetic average of the
 remaining values. Ten percent trimmed
 means are robust estimates (6) because
 they are not distorted by a small fraction
 of outliers, and they are a compromise
 between arithmetic means, which are 0
 percent trimmed means, and medians,
 which are trimmed means close to the 50

 percent level. The standard errors of 10
 percent trimmed means can be computed
 from a formula given in (7).

 Judged association for each of the 19
 scatterplots was summarized by 10 per-
 cent trimmed means of the subjects'
 guesses divided by 100 (8). These values
 are plotted in Fig. 2 against the actual
 values of r for the 19 scatterplots; also
 portrayed are the standard errors of the
 trimmed means (9). The two curves are
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 Fig. 2. The 10 percent trimmed means across subjects of judged
 association divided by 100 for 19 scatterplots are plotted (by the
 circle centers) against the values of r, the correlation coefficient, of
 the scatterplots. The circle radii portray the standard errors of the
 trimmed means. Thus the circle areas are proportional to the
 estimated variances of the trimmed means. The numbers to the left
 of the circles indicate the point-cloud sizes. When two numbers are
 shown, separated by a comma, two circles are nearly coincident and
 the first number refers to the circle with the smaller trimmed mean.
 The upper solid curve on the plot is g(r) and the lower solid curve is
 w(r). The dashed line is the line y = x. The information on the plot
 leads to two conclusions: judged association tends to increase as the
 point-cloud size decreases because of increasing scale; judged
 association is very different from the standard numerical measure of
 association, the correlation coefficient.

 0
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 Correlation

 w(r)andg(r) = 1 - /(l - r)/(l + r),g(r)
 being another measure of linear associa-
 tion that goes from 0 to 1 as r goes from 0
 to 1. An interpretation of g(r) in terms of
 the geometry of the point cloud will be
 given later.

 The judged association is seen to be
 quite different from the standard numeri-
 cal measure, r, with 10 percent trimmed
 means well below the line y = x. This
 result has been found in two other ex-

 periments (10) in which subjects were
 asked to guess the correlation coefficient
 from scatterplots and in experiments in
 which the amount of association was

 judged on the basis of other kinds of
 stimuli (11). [Two related but not directly
 relevant experiments are reported in (12)
 and (13).] Interestingly, these results
 also correspond to a statement by Wilk
 (14): ". .. it is felt by some [applied
 statisticians] that values of Irl below .5
 are quite 'small', while r is 'large' only
 when Irl is above .8, and r is 'really large'
 (close to a linear dependence of the
 variables) only when Irl is above .95."
 Wilk argues that w(r) is a more sensible
 numerical measure of association than r;
 Fig. 2 shows that w(r) does come closer
 to describing the perceived association
 for our subjects than does r.

 The tendency is for judged association
 to increase as the point-cloud size is
 decreased by the increase in the scales;
 the effect is most pronounced when
 w(r) = .4. In all cases the perceived as-
 sociations for sizes 1 and 2 are greater
 than those for sizes 3 and 4. The effect,
 however, does not appear to extend be-
 yond size 2: for all three values of w(r),
 the trimmed mean for point-cloud size 2
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 is either very close to that of size 1 or
 somewhat greater, and sizes 3 and 4
 differ from one another by a nontrivial
 amount only for w(r) = .4 (r = .8).

 To investigate the statistical signifi-
 cance of the effect of changing scale we
 performed the following operations: For
 each subject and each level of w(r) in
 which scale was varied [w(r) = .1, .4, .7]
 we subtracted the subject's estimate for
 the largest point-cloud size, 4, from each
 of the estimates for the other three sizes,
 which for each subject yielded three dif-
 ferences for each of the three levels of

 w(r); then we computed 10 percent
 trimmed means and their standard errors

 across the subjects. Each trimmed mean
 divided by its standard error has, ap-
 proximately, a t distribution with 57 de-
 grees of freedom (7); this distributional
 result can be used to test the significance
 of the difference between the point-cloud
 size 4 response and the responses to
 each of the other sizes. For w(r) = .1 the
 size 4 response is significantly different
 (at the .01 level) only from the size
 2 response; for w(r)= .4 the size 4
 response is significantly different from
 all three of the other responses; for
 w(r) = .7 the size 4 response is signifi-
 cantly different only from the size 1
 response.

 In the second experiment we checked
 this effect of scale under different condi-

 tions. We showed the two scatterplots
 in Fig. 1 alternatively, by an overhead
 transparency projected onto a screen in
 the front of a room, to 109 subjects in
 three groups of 27, 36, and 46 people.
 They were asked to assess the associa-
 tion of each plot on a scale of 0 to 100.

 The 10 percent trimmed mean of [(judg-
 ment for point-cloud size 2) - (judgment
 for point-cloud size 4)]/100 across sub-
 jects is .068 with a standard error of .011.
 The 10 percent trimmed mean of the
 corresponding values for the subjects in
 the first experiment is .125 with a stan-
 dard error of .018.

 In a third experiment 32 subjects in a
 single group were shown the scatterplots
 in Fig. 1 in the same manner as the
 subjects in the second experiment, but
 were told that the correlation coefficients

 of the two scatterplots were the same.
 They were asked to indicate whether one
 of the two "looked" more highly corre-
 lated than the other and if so, which one;
 66 percent indicated that the size 2 scat-
 terplot looked more correlated, 13 per-
 cent indicated the size 4 scatterplot, and
 22 percent said they looked the same.
 This has the same pattern as in the first
 experiment, where the corresponding
 percentages are 81, 18, and 15, and in the
 second experiment, where the corre-
 sponding percentages are 59, 11, and 30.

 Thus the second and third experiments
 strongly corroborate the conclusion of
 the first: increasing the scales on the
 horizontal and vertical axes of a scatter-

 plot so as to decrease the point-cloud
 size increases the judged association.

 Knowing what perceptual strategies
 people employ in judging association
 from scatterplots might not only provide
 an explanation of the effect of scale in
 our three experiments, but might also
 enable more effective design of scatter-
 plots. The point clouds on the scatter-
 plots in our experiments have an ellipti-
 cal look because the bivariate normal
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 Fig. 1. Reductions of two scatterplots used in the three types of experiments. The left panel is point-cloud size 2 and the right panel is point-cloud
 size 4. In both panels w(r) = .4 and r = .8.

 plotting character, the overall size of the
 display, the orientation of the point
 cloud within the frame, and the size of
 the point cloud within the frame. The last
 two factors are controlled by the scales
 of the vertical and horizontal axes in

 graphs with a plotting area of fixed size.
 To investigate how people judge asso-

 ciation from scatterplots and how dis-
 play factors affect their judgments, we
 did three experiments. Our subjects con-
 sisted of students in university courses in
 statistics, university faculty members in
 statistics and mathematics, and practic-
 ing statisticians in government and in-
 dustry.

 In the first experiment, 74 subjects
 viewed 19 scatterplots, all with 0 or
 positive correlation coefficients. The
 subjects were asked to judge linear asso-
 ciation on a scale from 0 (no linear
 association) to 100 (perfect linear associ-
 ation). The scatterplots in Fig. 1 are
 reductions of two of the stimuli from this

 experiment; the reader is invited to judge
 the association on these plots in order to
 understand the nature of the judgment
 task (3).

 We varied two factors: amount of as-

 sociation and point-cloud size. The size
 of the frame was kept fixed. There were
 ten levels of association; each scatterplot
 had a value of w(r) = 1 - Vl - 2
 equal to one of the values 0, .05, .1,
 .2, ..., .8, w(r) being another numeri-
 cal measure of linear association that

 goes from 0 to 1 as r goes from 0 to 1. An
 interpretation of w(r) in terms of the
 geometry of the point cloud will be given
 later; we used w(r) because it seemed,
 4 JUNE 1982

 a priori, closer to people's subjective
 scales than r. There were four point-
 cloud sizes; they are labeled 1 to 4, size 1
 being the smallest and size 4 the largest.
 For point-cloud size 3 there were ten
 scatterplots with the ten different values
 of w(r), and for each of the other sizes
 there were three scatterplots with values
 of w(r) equal to .1, .4, and .7.

 Each scatterplot had 200 points and a
 square frame with sides equal to 17.3 cm.
 In all cases the center of gravity of the
 point cloud was at the center of the
 frame. The values portrayed on the hori-
 zontal axis of the kth scatterplot, xi(k),
 for i = 1, ..., 200, and the values por-
 trayed on the vertical axis, yi(k), for
 i = 1, ..., 200, formed a bivariate su-
 pernormal point cloud (4) which ensured
 highly regular behavior: a linear relation,
 no peculiar points, and an elliptical ap-
 pearance. The major axis of each point
 cloud was the line y = x and the minor
 axis was the line y = -x.

 The minimum value portrayed on the
 two axes of all plots was 0 data units and
 the maximum value was 5.6, 7, 10, or 14
 data units. The length of each axis was
 17.3 cm; the four scale values were
 therefore .32, .40, .58, and .81 data units
 per centimeter. The effect of decreasing
 the scale was to increase the size of the

 point cloud within the frame.
 There were four orders of presentation

 of the 19 scatterplots with approximately
 one-fourth of the subjects judging each
 order. Two of the orders were random
 and the other two were the reverses of
 those.

 The scatterplots were presented in sta-

 pled booklets with 8/2 by 11 inch pages.
 First there were written instructions and

 sample scatterplots, then four trial plots
 that subjects judged; no feedback was
 given. Finally, there were the 19 experi-
 mental plots, each on a separate page.
 The subjects were asked to give their
 own subjective assessment of the
 amount of linear association, rather than
 to judge the correlation coefficient, and
 were asked not to look back or change
 old answers. It was suggested that they
 work reasonably quickly and that most
 people could comfortably make a single
 judgment within 15 seconds.

 Our data analyses made extensive use
 of 10 percent trimmed means (5), which
 are defined in the following way: Order
 the observations from smallest to larg-
 est; drop the largest 10 percent of the
 observations and the smallest 10 per-
 cent; take the arithmetic average of the
 remaining values. Ten percent trimmed
 means are robust estimates (6) because
 they are not distorted by a small fraction
 of outliers, and they are a compromise
 between arithmetic means, which are 0
 percent trimmed means, and medians,
 which are trimmed means close to the 50

 percent level. The standard errors of 10
 percent trimmed means can be computed
 from a formula given in (7).

 Judged association for each of the 19
 scatterplots was summarized by 10 per-
 cent trimmed means of the subjects'
 guesses divided by 100 (8). These values
 are plotted in Fig. 2 against the actual
 values of r for the 19 scatterplots; also
 portrayed are the standard errors of the
 trimmed means (9). The two curves are
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Pop Quiz: Why does this happen?







Homework: find examples of both 
positive and negative preattentive/
Gestalt behavior in a visualization.

Either find new ones, or re-evaluate 
your existing +/- examples.


