
4/13/2016 CSE 5/624 PSLC

HTCondor & Cloud stuff...

Game plan for today:

Condor use patterns

StarCluster: On-demand clusters, in “The Cloud”!

Introduction to Condor

Course logistics update

Thus far, we’ve largely talked about Hadoop...

M/R and Hadoop ecosystem is great, but:

... what if you’ve already got programs written?

... what if your data can’t go on HDFS?

There are other paradigms!

... what if your cluster doesn’t include Hadoop?

HTCondor is an example of a “queue”-based
clustering system.

Users submit jobs, which are processed in
order by worker machines.

Jobs specify what to do, where to do it, etc.

Others include SGE, OpenGrid, etc.

http://www.hpcwire.com/2013/05/30/running_stochastic_models_on_htcondor/

http://www.hpcwire.com/2013/05/30/running_stochastic_models_on_htcondor/
http://www.hpcwire.com/2013/05/30/running_stochastic_models_on_htcondor/

HTCondor was designed to work in a very
heterogeneous environment...

... and so provides lots of flexibility in its
configuration!

Condor is built around “slots” and “ads”

Compute nodes provide some number of “slots”...

... and advertise those slots capabilities:

CPU type, memory size, other capabilities, etc.

Jobs then submit requests specifying their runtime
requirements: “> 1 gig of RAM”, “2 CPUs”, etc.

Condor figures out which slot should service which jobs!

To run a condor job, first write a jobfile...

executable = run_monkeys.py
universe = vanilla
arguments = -brachiate=True -num_bananas=$(Process)

output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err
initialdir = /g/steven/monkey_data/

queue 10

To run a condor job, first write a jobfile...

executable = run_monkeys.py
universe = vanilla
arguments = -brachiate=True -num_bananas=$(Process)

output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err
initialdir = /g/steven/monkey_data/

queue 10

... and submit it:
$ condor_submit monkey_job.condor
Submitting job(s)..........
10 job(s) submitted to cluster 4.

Jobfiles can contain all sorts of other information:

request_memory = 1 GB

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
 (Arch == "X86_64" && OpSys =="LINUX")

Requirements = (OpSysName == "Ubuntu")

request_GPUs = 1

They can also provide hints to the scheduler:
TimeTaken = 60
+MaxExecutionTime = $(TimeTaken)
+JobPrio = -$(TimeTaken)

Rank = memory

Short jobs get priority

Use amount of RAM to break ties

Useful Condor commands:
$ condor_q

$ condor_q - global

list local Condor jobs

list all Condor jobs

$ condor_q - global - submitter YOURNAME # list your jobs

$ condor_status # query the Condor system for other data

$ condor_status HOSTNAME # view slot info on HOSTNAME

$ condor_status -format “%s “ Name -format “%d “ Cpus \
 -format “%d\n” Memory -constraint “Cpus >= 20”

view stats on all hosts with >= 20 CPU cores

$ condor_submit -interactive # get shell on a compute node

Users can specify a DAG of related condor jobs:

Job Setup setup.submit
Job WorkerNode_1 run1.submit
Job WorkerNode_2 run2.submit
Job WorkerNode_3 run3.submit
Job Finalize finalize.submit
PARENT Setup CHILD WorkerNode_1 WorkerNode_2 WorkerNode_3
PARENT WorkerNode_1 WorkerNode_2 WorkerNode_3 CHILD Finalize

$ condor_submit_dag myjob.dag
http://www.dartmouth.edu/~rc/classes/intro_grid/CondorG_Example7.html

http://www.dartmouth.edu/~rc/classes/intro_grid/CondorG_Example7.html
http://www.dartmouth.edu/~rc/classes/intro_grid/CondorG_Example7.html

Other (potentially) useful Condor features:

- The “java” universe

- The “parallel” universe

- File transfer

- Checkpointing

- Not often necessary, when there is shared storage...

- Only sometimes possible...

Condor use patterns:

Scenario: Process lots of input data in parallel

$ run_monkeys.py -brachiate True -num_bananas 4 -input my_file.txt

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -brachiate True -num_bananas 1 -input $(Process).txt
output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err
queue 100 # or however many shards there are

Solution: shard data, key shards by process ID:

Use DAG to consolidate output?

Condor use patterns:

1. Programmatically generate submit file, queue once

2. Pass process ID in as argument, queue many

Scenario: Grid-searching over parameter space

$ run_monkeys.py -brachiate True -num_bananas 1 -input my_input.txt

1. Programmatically generate submit file, queue once

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -brachiate True -num_bananas 1 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.True.num.1.out
error = /g/steven/monkeys/err/brachiate.True.num.1.err
queue

arguments = -brachiate True -num_bananas 2 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.True.num.2.out
error = /g/steven/monkeys/err/brachiate.True.num.2.err
queue

...
arguments = -brachiate False -num_bananas 1 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.False.num.1.out
error = /g/steven/monkeys/err/brachiate.False.num.1.err
queue

2. Pass process ID in as argument, queue many

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -setting $(Process) -input my_input.txt
output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err
queue 200

true 1
true 2
true 3
true 4
...
true 100
false 1
false 2
...

should_brachiate = parameters[args.setting][0]
num_bananas = parameters[args.setting][1]

Game plan for today:

Condor use patterns

StarCluster: On-demand clusters, in “The Cloud”!

Introduction to Condor

Course logistics update

StarCluster:

A Python library to automatically setup and
configure clusters on AWS!

AWS is Amazon.com’s suite of cloud services:

Key ideas:

EC2 “instances” are virtual machines...
Instances can be of many sizes:

https://aws.amazon.com/ec2/instance-types/

Payment by cpu time, varies by instance size

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Key ideas:

EBS = “Elastic Block Volumes”

Virtual storage, can be of (almost) any size or type.

Payment based on space used and amount of I/O.

S3 = “Simple Storage System”
“Bucket” of data in the sky

Payment based on space used and number of requests

Setting up an EC2 instance is easy...

... configuring many instances gets old fast.

Enter StarCluster!

