HTCondor & Cloud stuff...

4/13/2016 CSE 5/624 PSLC

Game plan for today:

Introduction to Condor
Condor use patterns

StarCluster: On-demand clusters, in “The Cloud”!

Course logistics update

Thus far, we've largely talked about Hadoop...

M/R and Hadoop ecosystem is great, but:

... what if you've already got programs written?
... what if your data can’t go on HDFS?

... what if your cluster doesn’t include Hadoop?

There are other paradigms!

HTCondor is an example of a “queue”-based
clustering system.

Users submit jobs, which are processed in
order by worker machines.

Jobs specity what to do, where to do it, etc.

Others include SGE, OpenGirid, etc.

Master Computer

‘ External Resources
Only Submits . » HTCondor
Jobs to Master [» (- Cloud Computing
Computer = = ¢ -HPC

\ 4
Only Accept Submit and
and Run Jobs Run Jobs
from Master
_ Computer *
Worker Computer l

Worker Computer Waorker Computer

http:/www.hpcwire.com/2013/05/30/running_stochastic models_on_htcondor/

http://www.hpcwire.com/2013/05/30/running_stochastic_models_on_htcondor/
http://www.hpcwire.com/2013/05/30/running_stochastic_models_on_htcondor/

N

JobStartDate Job start

' € - Staging complete

E Job suspended |

- Job restarnt -

LastVacateTime i-é 4’ Job evicted E

JobCurrentStartDate ; >

JobCurrentStanExecutingDate <

LastSuspensionTime —

S RGCETTETEEP T

JobCurrentStartTransferQutputDate =

CompletionDate E<

I I I I D O

\
/
Job start \
In transfer
complete
Job
suspended ﬂ}_<~ ﬁi
Job (re)sta 1

Start cutput
transfer

Job end)

RemoteWallClockTime

edSuspensionTime

CommittedTime

HTCondor was designed to work in a very
heterogeneous environment...

... and so provides lots of flexibility in its
configuration!

Condor is built around “slots” and “ads”
Compute nodes provide some number of “slots”...

... and advertise those slots capabilities:

CPU type, memory size, other capabilities, etc.

Jobs then submit requests specifying their runtime
requirements: “> 1 gig of RAM”, “2 CPUs”, etc.

Condor figures out which slot should service which jobs!

To run a condor job, first write a jobfile...

executable = run_monkeys.py
universe = vanilla
arguments = -brachiate=True -num_bananas=$(Process)

output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err

initialdir = /g/steven/monkey_data/

queue 10

To run a condor job, first write a jobfile...

executable = run_monkeys.py
universe = vanilla
arguments = -brachiate=True -num_bananas=$(Process)

output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err
initialdir = /g/steven/monkey_data/

queue 10

... and submit it:

$ condor_submit monkey_job.condor
Submitting job(s)..........
10 job(s) submitted to cluster 4.

Jobfiles can contain all sorts of other information:

request_memory = 1 GB

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

Requirements = (OpSysName == "Ubuntu")

request_GPUs =1

They can also provide hints to the scheduler:

TimeTaken = 60

+MaxExecutionTime = $(TimeTaken) # Short jobs get priority
+JobPrio = -$(TimeTaken)

Rank = memory # Use amount of RAM to break ties

Useful Condor commands:

$

A TH= A A A A

condor_qg # list local Condor jobs

condor_qg - global # list all Condor jobs

condor_q - global - submitter YOURNAME # list your jobs
condor_status # query the Condor system for other data
condor_status HOSTNAME # view slot info on HOSTNAME
view stats on all hosts with >= 20 CPU cores

condor_status -format “%s “ Name -format “%d “ Cpus \
-format “%d\n” Memory -constraint “Cpus >= 20”

condor_submit -interactive # get shell on a compute node

Users can specity a DAG of related condor jobs:

Set up
program

VT

Run #1 Run #2 Run #3 Parametric Runs

A4
Finalize
Output

Jo
Jo

Setup setup.submit

WorkerNode_1 runl.submit

Job WorkerNode_2 runZ.submit

Job WorkerNode_3 run3.submit

Job Finalize finalize.submit

PARENT Setup CHILD WorkerNode_1 WorkerNode_2 WorkerNode_3
PARENT WorkerNode_1 WorkerNode_2 WorkerNode_3 CHILD Finalize

D
D
D
D

$ condor_submit_dag myjob.dag

http:/www.dartmouth.edu/~rc/classes/intro_grid/CondorG Example7.html

http://www.dartmouth.edu/~rc/classes/intro_grid/CondorG_Example7.html
http://www.dartmouth.edu/~rc/classes/intro_grid/CondorG_Example7.html

Other (potentially) useful Condor features:
- The “java” universe

I//

- The “parallel” universe

- File transfer

- Not often necessary, when there is shared storage...

- Checkpointing

- Only sometimes possible...

Condor use patterns:

Scenario: Process lots of input data in parallel

$ run_monkeys.py -brachiate True -num_bananas 4 -input my_file.txt

Solution: shard data, key shards by process ID:

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -brachiate True -num_bananas 1 -input $(Process).txt
output = /g/steven/monkeys/out/$(Process).out

error = /g/steven/monkeys/err/$(Process).err

queue 100 # or however many shards there are

Use DAG to consolidate output?

Condor use patterns:

Scenario: Grid-searching over parameter space

$ run_monkeys.py -brachiate True -num_bananas 1 -input my_input.txt

1. Programmatically generate submit file, queue once

2. Pass process ID in as argument, queue many

1. Programmatically generate submit file, queue once

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -brachiate True -num_bananas 1 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.True.num.1.out

error = /g/steven/monkeys/err/brachiate.True.num.1l.err

queue

arguments = -brachiate True -num_bananas 2 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.True.num.2.out

error = /g/steven/monkeys/err/brachiate.True.num.2.err

queue

arguments = -brachiate False -num_bananas 1 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.False.num.l.out

error = /g/steven/monkeys/err/brachiate.False.num.1l.err

queue

2. Pass process ID in as argument, queue many

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -setting $(Process) -input my_input.txt
output = /g/steven/monkeys/out/$(Process).out

error = /g/steven/monkeys/err/$(Process).err

queue 200

true 1
true 2

true 3
true 4 should_brachiate = parameters[args.setting][0]

num_bananas = parameters[args.setting][1]
true 100
false 1
false 2

Game plan for today:

Introduction to Condor
Condor use patterns

StarCluster: On-demand clusters, in “The Cloud”!

Course logistics update

StarCluster:

A Python library to automatically setup and
configure clusters on AWS!

(

Local Laptop/Workstatio) . Amazon EC2 Cloud Y

'

sstarcluster start mycluster '

$starcluster sshmastar myciustar
i
' Master \—-\- v
¥
' v
'

® O ® i aws vanagement Coreo'

« C [nttps//us-west-2.console.aws.amazon.com/console/homa?nc2=h_m_mclmegion=us-west-2
I oapps L OMSU [Apple - Find Out How

Amazon Web Services

Compute
EC2
Virtsal Servers n the Clogd
EC2 Container Service
Mun and Marage Docker Cortanens
Elastic Beanstalk
Mun and Masage Web Appe

Lambda

Run Code in Reaporse 10 Everts

Storage & Content Delivery
S3

Scalatie Surage n Pe Coud
o CloudFront

WP Giobal Comtert Delvery Network
Elastic File System ™
Fully Naraged Fie Sysoem for EC2
Glacier
Aochive Sorage i Pe Cloud

s Import/Export Snowbal

Large Scale Deta Trarmport

‘ Storage Gateway

Hytrid Siorage nlegraton

Database
RDS

Managed Reasorel Database Sorvice

. DynamoDB

Managed NoSCL Database
ElastiCache

n-Memory Cache

Redshift

Fast Sirgie Cost£Rective Data Washousing

DMS

Maraged Ua'atase Moraon Serdce

Networking
s VPC

WP nokted Cloud Resources

Direct Connect

Dedcatnd Network Conrection 1o AWS

Route 53

Scalatée DNS and Doman Name Regsraton

Developer Tools
CodeCommit
Sore Code n Private Gt Repostiones

@ CodeDepioy

Automate Code Deployments

= CodePipeine

> Reloase Software saing Cortinuous Delvery

Management Tools
CloudWatch

Moniicr Resources and ASpiCanons

CloudFormation
Create and Manage Resowrces wd Termpaties

CloudTrail
Track Usar Activity and AP Usage

Confyg

W@ Track Rescowrce invertory and FM.)-‘

‘ OpsWorks

Automate Operatons with Che!

‘ Service Catalog
Cosate and Une Sandaiired Prodects
Trusted Acvisor

Optirrize Performance and Securty

Security & Identity
Klentity & Access Management

Manage User ACCess and Encrypaon Xeys
Directory Service

Host and Marage Actve Deeciory
Inspector ™

AnatyTe Appicasion Securty

WAF

Fiae Malcious Wed Trafic

Certificate Manager
Provigion, Marage. and Deploy SSUUTLS
Carticatos

€ = (B ~

Analylics
EMR

Maraged Madoop F ramework

< Data Pipeine
:- Orchastraton for Data-Driven Workfiows

Elasticsearch Service
Run and Scale Bicsserch Cusens

& Kinesis

& Work wih Resd- Time Sreamerg Data

3 Machine Leaming

Bukd Sman Apgicanons Quaokly and Easly

internet of Things
AWS loT

Correct Dovioms 1o e Ooud

Game Development
Gamelit

Degioy and Scale Seasscn-tased VMulipiayer
Games

Mobile Services
&> Mobile Hub
'.’.' Budd, Teal and Moniior Nobeie Aggs

@ Cognito

User iority and App Data Synctvonizaton

& Device Farm
W Test Andvodd, FeOS, and 108 Apps on Real
Devices in the Cloud

‘ Mobile Analytcs

Collect, View and Expornt App Analytcs
. Push NosSicaton Service

Application Services
AP| Gateway

Bedd, Degioy and Nanage AP

AppStream

Low Latency Applcation S g
CloudSearch

Maraged Search Service
Elastic Transcoder

Easy-10-Use Scalabie Meda Traracoding

SES

Emal Sendrg and Recewving Service

SQS

Message Queve Service

Wordoe Servce for Coordraing Apohcaton
Components

e O4&

Enterprise Applications

@ WorkSpaces
Dosicops n the Cous

o WorkDocs
Secure Erterprise Sorage and Stawg
Service

@ WorkMail

Secure Emal and Calendarng Service

Steven Bedrick ~

AWS is Amazon.com’s suite of cloud services:

Q0 o

Support ~

Oregon ~

Resource Groups Leam moee

A 1080 Qroup is a collection of
MS0UCes that shamn one or Mmoo Lags
Create a group for each project,
appicaton, or ervironmaent in your
account

o

Additional Resources

Getting Started (7
Read cur documentation of view our
training to loam more about AWS

AWS Conscle Mobile App (4

View yout nesourcas on e 9o with our
AWS Conscle mobile app, avalable
from Amazon Appstore, Google Play, or
iTunes

AWS Marketplace (7
Find and buy software, launch with 1-
Click and pay by e hour

AWS re:invent Announcements
“

Explore the next generation of AWS
doud capabiltios. See what's new

Service Health

& Al services operating normaly

Updated Agr 1) 2046 14 2000 GNIT.0700
Service Hoalh Dashboard

Key ideas:

EC2 “instances” are virtual machines...
Instances can be of many sizes:

Compute Optimized
C4

» ~ | £ o
4 instances are the latest generation of Compute Dedicated

optimized instances, featuring the highest performing

Mod oPU Mem s EBS
” anre . " ' n f, 1t vioge Vo torage
processors and the lowest price/compute (GiB) g Throughput
performance in EC2. Mbps)
Features: 7
EBS-
e s , c4.large 2 3.75 500
« High frequency Intel Xeon ES-2666 v3 (Haswell) Only
processors optimized specifically for EC2
4.xI 4 T ad 50
cd. xlarge . §
« EBS-optimized by default and at no additional cost a9 ! Only =
« Ability to control processor C-state and P-state EBS-
i 2 Ol cd.2xlarge 8 15 1,000
configuration on the c4.8xlarge instance type Only
» Support for Enhanced Networking and Clustering EBS.
c4.4xlarge 16 30 2,000
Only
~ EBS-
c4.8xlarge 36 60 4,000
Only

https://aws.amazon.com/ec?/instance-types/

Payment by cpu time, varies by instance size

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Key ideas:

EBS = “Elastic Block Volumes”

Virtual storage, can be of (almost) any size or type.

Payment based on space used and amount of I/O.

S3 = “Simple Storage System”
“Bucket” of data in the sky

Payment based on space used and number of requests

Setting up an EC2 instance is easy...

... configuring many instances gets old fast.

Enter StarCluster!

