HTCondor & Cloud stuff...
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Game plan for today:

Introduction to Condor
Condor use patterns

StarCluster: On-demand clusters, in “The Cloud”!

Course logistics update



Thus far, we've largely talked about Hadoop...

M/R and Hadoop ecosystem is great, but:

... what if you've already got programs written?
... what if your data can’t go on HDFS?

... what if your cluster doesn’t include Hadoop?

There are other paradigms!



HTCondor is an example of a “queue”-based
clustering system.

Users submit jobs, which are processed in
order by worker machines.

Jobs specity what to do, where to do it, etc.

Others include SGE, OpenGirid, etc.
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HTCondor was designed to work in a very
heterogeneous environment...

... and so provides lots of flexibility in its
configuration!



Condor is built around “slots” and “ads”
Compute nodes provide some number of “slots”...

... and advertise those slots capabilities:

CPU type, memory size, other capabilities, etc.

Jobs then submit requests specifying their runtime
requirements: “> 1 gig of RAM”, “2 CPUs”, etc.

Condor figures out which slot should service which jobs!



To run a condor job, first write a jobfile...

executable = run_monkeys.py
universe = vanilla
arguments = -brachiate=True -num_bananas=$(Process)

output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err

initialdir = /g/steven/monkey_data/

queue 10



To run a condor job, first write a jobfile...

executable = run_monkeys.py
universe = vanilla
arguments = -brachiate=True -num_bananas=$(Process)

output = /g/steven/monkeys/out/$(Process).out
error = /g/steven/monkeys/err/$(Process).err
initialdir = /g/steven/monkey_data/

queue 10

... and submit it:

$ condor_submit monkey_job.condor
Submitting job(s)..........
10 job(s) submitted to cluster 4.



Jobfiles can contain all sorts of other information:

request_memory = 1 GB

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

Requirements = (OpSysName == "Ubuntu")

request_GPUs =1

They can also provide hints to the scheduler:

TimeTaken = 60

+MaxExecutionTime = $(TimeTaken) # Short jobs get priority
+JobPrio = -$(TimeTaken)

Rank = memory # Use amount of RAM to break ties



Useful Condor commands:

$

A TH= A A A A

condor_qg # list local Condor jobs

condor_qg - global # list all Condor jobs

condor_q - global - submitter YOURNAME # list your jobs
condor_status # query the Condor system for other data
condor_status HOSTNAME # view slot info on HOSTNAME
view stats on all hosts with >= 20 CPU cores

condor_status -format “%s “ Name -format “%d “ Cpus \
-format “%d\n” Memory -constraint “Cpus >= 20”

condor_submit -interactive # get shell on a compute node



Users can specity a DAG of related condor jobs:
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$ condor_submit_dag myjob.dag

http:/www.dartmouth.edu/~rc/classes/intro_grid/CondorG Example7.html
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Other (potentially) useful Condor features:
- The “java” universe

I//

- The “parallel” universe

- File transfer

- Not often necessary, when there is shared storage...

- Checkpointing

- Only sometimes possible...



Condor use patterns:

Scenario: Process lots of input data in parallel

$ run_monkeys.py -brachiate True -num_bananas 4 -input my_file.txt

Solution: shard data, key shards by process ID:

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -brachiate True -num_bananas 1 -input $(Process).txt
output = /g/steven/monkeys/out/$(Process).out

error = /g/steven/monkeys/err/$(Process).err

queue 100 # or however many shards there are

Use DAG to consolidate output?



Condor use patterns:

Scenario: Grid-searching over parameter space

$ run_monkeys.py -brachiate True -num_bananas 1 -input my_input.txt

1. Programmatically generate submit file, queue once

2. Pass process ID in as argument, queue many



1. Programmatically generate submit file, queue once

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -brachiate True -num_bananas 1 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.True.num.1.out

error = /g/steven/monkeys/err/brachiate.True.num.1l.err

queue

arguments = -brachiate True -num_bananas 2 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.True.num.2.out

error = /g/steven/monkeys/err/brachiate.True.num.2.err

queue

arguments = -brachiate False -num_bananas 1 -input my_input.txt
output = /g/steven/monkeys/out/brachiate.False.num.l.out

error = /g/steven/monkeys/err/brachiate.False.num.1l.err

queue



2. Pass process ID in as argument, queue many

executable = run_monkeys.py
universe = vanilla
initialdir = /g/steven/monkey_data/

arguments = -setting $(Process) -input my_input.txt
output = /g/steven/monkeys/out/$(Process).out

error = /g/steven/monkeys/err/$(Process).err

queue 200

true 1
true 2

true 3
true 4 should_brachiate = parameters[args.setting][0]

num_bananas = parameters[args.setting][1]
true 100
false 1
false 2



Game plan for today:

Introduction to Condor
Condor use patterns
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Course logistics update



StarCluster:

A Python library to automatically setup and
configure clusters on AWS!

(

Local Laptop/Workstatio) . Amazon EC2 Cloud Y

'

sstarcluster start mycluster '

$starcluster sshmastar myciustar
i
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Key ideas:

EC2 “instances” are virtual machines...
Instances can be of many sizes:

Compute Optimized
C4

» ~ | £ o
4 instances are the latest generation of Compute Dedicated

optimized instances, featuring the highest performing

Mod oPU Mem s EBS
” anre . " ' n f, 1t vioge Vo torage
processors and the lowest price/compute (GiB) g Throughput
performance in EC2. Mbps)
Features: 7
EBS-
e s , c4.large 2 3.75 500
« High frequency Intel Xeon ES-2666 v3 (Haswell) Only
processors optimized specifically for EC2
4.xI 4 T ad 50
cd. xlarge . §
« EBS-optimized by default and at no additional cost a9 ! Only =
« Ability to control processor C-state and P-state EBS-
i 2 Ol cd.2xlarge 8 15 1,000
configuration on the c4.8xlarge instance type Only
» Support for Enhanced Networking and Clustering EBS.
c4.4xlarge 16 30 2,000
Only
~ EBS-
c4.8xlarge 36 60 4,000
Only

https://aws.amazon.com/ec?/instance-types/

Payment by cpu time, varies by instance size
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Key ideas:

EBS = “Elastic Block Volumes”

Virtual storage, can be of (almost) any size or type.

Payment based on space used and amount of I/O.

S3 = “Simple Storage System”
“Bucket” of data in the sky

Payment based on space used and number of requests









Setting up an EC2 instance is easy...

... configuring many instances gets old fast.

Enter StarCluster!



