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Spark!



Game plan for today:

Spark: Basic Concepts

Some examples

What’s wrong with Map-Reduce?

Spark on our cluster

Project proposals



What’s wrong with Map-Reduce?

A different question: what’s right with Map-Reduce?

- Scales wonderfully

- Nice HDFS abstraction

- Flexible formalism (in some ways)

So, what’s the problem?



What’s wrong with Map-Reduce?

- Primarily good for batch-processing...

- Clunky API

- Inefficient for iterative algorithms (lots of data 
schlepping)

Fundamentally, Map-Reduce is a low-level 
programming abstraction.

- ... iterative algorithms need a lot of thought:



Spark is a higher-level API for Hadoop 
programming:

Rather than explicitly creating discrete M-R 
jobs, one codes “as normal” using familiar 
functional programming constructs:

val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val ones = errs.map(_ => 1)
val count = ones.reduce(_+_)



A note on language:

Spark is written in Scala:



val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val ones = errs.map(_ => 1)
val count = ones.reduce(_+_)



A note on language:

Spark is written in Scala:

... but there are APIs in Python, R, etc.



Spark is built around “RDD”s:

Resilient...

... Distributed...

... Datasets.

The key idea: an RDD looks like a single object...

... but is actually distributed across the cluster.

(Using regular HDFS-esque partitioning)



Spark is built around “RDD”s:

Other key ideas:
RDDs are lazily constructed...

... “know” how they were created...

... and can be cached for future use.

RDDs, “under the hood,” comprise:
An array of partitions...
A partition-level function...
A list of parent RDDs...
A partitioner function (optional)...
A list of partition-level “preferred locations” (optional).



3. Optimize M given U to minimize error on R.
4. Repeat steps 2 and 3 until convergence.

ALS can be parallelized by updating different users /
movies on each node in steps 2 and 3. However, because
all of the steps use R, it is helpful to make R a broadcast
variable so that it does not get re-sent to each node on each
step. A Spark implementation of ALS that does is shown
below. Note that we parallelize the collection 0 until u

(a Scala range object) and collect it to update each array:

val Rb = spark.broadcast(R)
for (i <- 1 to ITERATIONS) {
U = spark.parallelize(0 until u)

.map(j => updateUser(j, Rb, M))

.collect()
M = spark.parallelize(0 until m)

.map(j => updateUser(j, Rb, U))

.collect()
}

4 Implementation
Spark is built on top of Mesos [16, 15], a “cluster operat-
ing system” that lets multiple parallel applications share
a cluster in a fine-grained manner and provides an API
for applications to launch tasks on a cluster. This allows
Spark to run alongside existing cluster computing frame-
works, such as Mesos ports of Hadoop and MPI, and share
data with them. In addition, building on Mesos greatly re-
duced the programming effort that had to go into Spark.

The core of Spark is the implementation of resilient dis-
tributed datasets. As an example, suppose that we define
a cached dataset called cachedErrs representing error
messages in a log file, and that we count its elements us-
ing map and reduce, as in Section 3.1:

val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val cachedErrs = errs.cache()
val ones = cachedErrs.map(_ => 1)
val count = ones.reduce(_+_)

These datasets will be stored as a chain of objects cap-
turing the lineage of each RDD, shown in Figure 1. Each
dataset object contains a pointer to its parent and informa-
tion about how the parent was transformed.

Internally, each RDD object implements the same sim-
ple interface, which consists of three operations:
• getPartitions, which returns a list of partition IDs.
• getIterator(partition), which iterates over a partition.
• getPreferredLocations(partition), which is used for

task scheduling to achieve data locality.
When a parallel operation is invoked on a dataset, Spark

creates a task to process each partition of the dataset and
sends these tasks to worker nodes. We try to send each

HdfsTextFile 
path = hdfs://… 

file: 

FilteredDataset 
func = _.contains(…) 

errs: 

CachedDataset cachedErrs: 

MappedDataset 
func = _ => 1 

ones: 

Figure 1: Lineage chain for the distributed dataset objects de-
fined in the example in Section 4.

task to one of its preferred locations using a technique
called delay scheduling [26]. Once launched on a worker,
each task calls getIterator to start reading its partition.

The different types of RDDs differ only in how they
implement the RDD interface. For example, for a Hdfs-
TextFile, the partitions are block IDs in HDFS, their pre-
ferred locations are the block locations, and getIterator
opens a stream to read a block. In a MappedDataset, the
partitions and preferred locations are the same as for the
parent, but the iterator applies the map function to ele-
ments of the parent. Finally, in a CachedDataset, the
getIterator method looks for a locally cached copy of a
transformed partition, and each partition’s preferred loca-
tions start out equal to the parent’s preferred locations, but
get updated after the partition is cached on some node to
prefer reusing that node. This design makes faults easy to
handle: if a node fails, its partitions are re-read from their
parent datasets and eventually cached on other nodes.

Finally, shipping tasks to workers requires shipping
closures to them—both the closures used to define a dis-
tributed dataset, and closures passed to operations such as
reduce. To achieve this, we rely on the fact that Scala clo-
sures are Java objects and can be serialized using Java se-
rialization; this is a feature of Scala that makes it relatively
straightforward to send a computation to another machine.
Scala’s built-in closure implementation is not ideal, how-
ever, because we have found cases where a closure object
references variables in the closure’s outer scope that are
not actually used in its body. We have filed a bug report
about this, but in the meantime, we have solved the issue
by performing a static analysis of closure classes’ byte-
code to detect these unused variables and set the corre-
sponding fields in the closure object to null. We omit
the details of this analysis due to lack of space.

Shared Variables: The two types of shared variables in
Spark, broadcast variables and accumulators, are imple-
mented using classes with custom serialization formats.
When one creates a broadcast variable b with a value v,
v is saved to a file in a shared file system. The serialized
form of b is a path to this file. When b’s value is queried
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Spark is built around “RDD”s:

RDDs are immutable, and support two kinds 
of operation:

transformations and actions

RDD transformations:

1. Occur lazily;

2. Produce another RDD.



Spark is built around “RDD”s:

RDDs are immutable, and support two kinds 
of operation:

transformations and actions

RDD actions:

1. Trigger computation;

2. Produce values.



Types of transformations:

map, flatMap, filter, join, split, sort, reduce, etc.

There are two main families of transformation:

“Narrow” transformations live within a single partition 
(map, filter, etc.)...

“Wide” transformations require data from multiple 
partitions, and so involve a shuffle operation 
(reduceByKey, groupByKey, etc.)



Types of actions:

collect, count, first, min, etc.

Actions result in actual computation, and are 
synchronous.
val nytData = sc.textFile(nyt_path).cache()
val nytWords = nytData.flatMap(_.split(“\\s+”))
val nytLongWords = nytWords.filter(_.length > 10)
val nytWordPairs = nytLongWords.map((_,1))
val nytWordCounts = nytWordPairs.reduceByKey(_ + _)

val top10 = nytWc.takeOrdered(10)
(Ordering[Int].reverse.on(_._2))

top10: Array[(String, Int)] = Array((information,373606), (administration,315473), 
(Republicans,247374), (international,213471), (International,206628), (Association,
179004), (performance,176204), (presidential,173842), (particularly,166205), 
(development,155663))



Spark lets you program in parallel very naturally:able” object that wraps the value and ensures that it is
only copied to each worker once.

• Accumulators: These are variables that workers can
only “add” to using an associative operation, and that
only the driver can read. They can be used to im-
plement counters as in MapReduce and to provide a
more imperative syntax for parallel sums. Accumu-
lators can be defined for any type that has an “add”
operation and a “zero” value. Due to their “add-only”
semantics, they are easy to make fault-tolerant.

3 Examples
We now show some sample Spark programs. Note that we
omit variable types because Scala supports type inference.

3.1 Text Search

Suppose that we wish to count the lines containing errors
in a large log file stored in HDFS. This can be imple-
mented by starting with a file dataset object as follows:

val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val ones = errs.map(_ => 1)
val count = ones.reduce(_+_)

We first create a distributed dataset called file that
represents the HDFS file as a collection of lines. We trans-
form this dataset to create the set of lines containing “ER-
ROR” (errs), and then map each line to a 1 and add up
these ones using reduce. The arguments to filter, map and
reduce are Scala syntax for function literals.

Note that errs and ones are lazy RDDs that are never
materialized. Instead, when reduce is called, each worker
node scans input blocks in a streaming manner to evaluate
ones, adds these to perform a local reduce, and sends its
local count to the driver. When used with lazy datasets in
this manner, Spark closely emulates MapReduce.

Where Spark differs from other frameworks is that it
can make some of the intermediate datasets persist across
operations. For example, if wanted to reuse the errs

dataset, we could create a cached RDD from it as follows:

val cachedErrs = errs.cache()

We would now be able to invoke parallel operations on
cachedErrs or on datasets derived from it as usual, but
nodes would cache partitions of cachedErrs in memory
after the first time they compute them, greatly speeding
up subsequent operations on it.

3.2 Logistic Regression

The following program implements logistic regression
[3], an iterative classification algorithm that attempts to
find a hyperplane w that best separates two sets of points.
The algorithm performs gradient descent: it starts w at a
random value, and on each iteration, it sums a function of

w over the data to move w in a direction that improves it.
It thus benefits greatly from caching the data in memory
across iterations. We do not explain logistic regression in
detail, but we use it to show a few new Spark features.

// Read points from a text file and cache them
val points = spark.textFile(...)

.map(parsePoint).cache()
// Initialize w to random D-dimensional vector
var w = Vector.random(D)
// Run multiple iterations to update w
for (i <- 1 to ITERATIONS) {
val grad = spark.accumulator(new Vector(D))
for (p <- points) { // Runs in parallel

val s = (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
grad += s * p.x

}
w -= grad.value

}

First, although we create an RDD called points, we
process it by running a for loop over it. The for key-
word in Scala is syntactic sugar for invoking the foreach
method of a collection with the loop body as a closure.
That is, the code for(p <- points){body} is equiv-
alent to points.foreach(p => {body}). Therefore,
we are invoking Spark’s parallel foreach operation.

Second, to sum up the gradient, we use an accumulator
variable called gradient (with a value of type V ector).
Note that the loop adds to gradient using an overloaded
+= operator. The combination of accumulators and for

syntax allows Spark programs to look much like impera-
tive serial programs. Indeed, this example differs from a
serial version of logistic regression in only three lines.

3.3 Alternating Least Squares

Our final example is an algorithm called alternating least
squares (ALS). ALS is used for collaborative filtering
problems, such as predicting users’ ratings for movies that
they have not seen based on their movie rating history (as
in the Netflix Challenge). Unlike our previous examples,
ALS is CPU-intensive rather than data-intensive.

We briefly sketch ALS and refer the reader to [27] for
details. Suppose that we wanted to predict the ratings of u

users for m movies, and that we had a partially filled ma-
trix R containing the known ratings for some user-movie
pairs. ALS models R as the product of two matrices M

and U of dimensions m ⇥ k and k ⇥ u respectively; that
is, each user and each movie has a k-dimensional “feature
vector” describing its characteristics, and a user’s rating
for a movie is the dot product of its feature vector and the
movie’s. ALS solves for M and U using the known rat-
ings and then computes M ⇥ U to predict the unknown
ones. This is done using the following iterative process:
1. Initialize M to a random value.
2. Optimize U given M to minimize error on R.
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Spark lets you program in parallel very naturally:able” object that wraps the value and ensures that it is
only copied to each worker once.

• Accumulators: These are variables that workers can
only “add” to using an associative operation, and that
only the driver can read. They can be used to im-
plement counters as in MapReduce and to provide a
more imperative syntax for parallel sums. Accumu-
lators can be defined for any type that has an “add”
operation and a “zero” value. Due to their “add-only”
semantics, they are easy to make fault-tolerant.

3 Examples
We now show some sample Spark programs. Note that we
omit variable types because Scala supports type inference.

3.1 Text Search

Suppose that we wish to count the lines containing errors
in a large log file stored in HDFS. This can be imple-
mented by starting with a file dataset object as follows:

val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val ones = errs.map(_ => 1)
val count = ones.reduce(_+_)

We first create a distributed dataset called file that
represents the HDFS file as a collection of lines. We trans-
form this dataset to create the set of lines containing “ER-
ROR” (errs), and then map each line to a 1 and add up
these ones using reduce. The arguments to filter, map and
reduce are Scala syntax for function literals.

Note that errs and ones are lazy RDDs that are never
materialized. Instead, when reduce is called, each worker
node scans input blocks in a streaming manner to evaluate
ones, adds these to perform a local reduce, and sends its
local count to the driver. When used with lazy datasets in
this manner, Spark closely emulates MapReduce.

Where Spark differs from other frameworks is that it
can make some of the intermediate datasets persist across
operations. For example, if wanted to reuse the errs

dataset, we could create a cached RDD from it as follows:

val cachedErrs = errs.cache()

We would now be able to invoke parallel operations on
cachedErrs or on datasets derived from it as usual, but
nodes would cache partitions of cachedErrs in memory
after the first time they compute them, greatly speeding
up subsequent operations on it.

3.2 Logistic Regression
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[3], an iterative classification algorithm that attempts to
find a hyperplane w that best separates two sets of points.
The algorithm performs gradient descent: it starts w at a
random value, and on each iteration, it sums a function of

w over the data to move w in a direction that improves it.
It thus benefits greatly from caching the data in memory
across iterations. We do not explain logistic regression in
detail, but we use it to show a few new Spark features.

// Read points from a text file and cache them
val points = spark.textFile(...)

.map(parsePoint).cache()
// Initialize w to random D-dimensional vector
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// Run multiple iterations to update w
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val s = (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
grad += s * p.x
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First, although we create an RDD called points, we
process it by running a for loop over it. The for key-
word in Scala is syntactic sugar for invoking the foreach
method of a collection with the loop body as a closure.
That is, the code for(p <- points){body} is equiv-
alent to points.foreach(p => {body}). Therefore,
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variable called gradient (with a value of type V ector).
Note that the loop adds to gradient using an overloaded
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they have not seen based on their movie rating history (as
in the Netflix Challenge). Unlike our previous examples,
ALS is CPU-intensive rather than data-intensive.

We briefly sketch ALS and refer the reader to [27] for
details. Suppose that we wanted to predict the ratings of u

users for m movies, and that we had a partially filled ma-
trix R containing the known ratings for some user-movie
pairs. ALS models R as the product of two matrices M

and U of dimensions m ⇥ k and k ⇥ u respectively; that
is, each user and each movie has a k-dimensional “feature
vector” describing its characteristics, and a user’s rating
for a movie is the dot product of its feature vector and the
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“Local” vs. “Broadcast” variables:

3. Optimize M given U to minimize error on R.
4. Repeat steps 2 and 3 until convergence.

ALS can be parallelized by updating different users /
movies on each node in steps 2 and 3. However, because
all of the steps use R, it is helpful to make R a broadcast
variable so that it does not get re-sent to each node on each
step. A Spark implementation of ALS that does is shown
below. Note that we parallelize the collection 0 until u

(a Scala range object) and collect it to update each array:

val Rb = spark.broadcast(R)
for (i <- 1 to ITERATIONS) {
U = spark.parallelize(0 until u)

.map(j => updateUser(j, Rb, M))

.collect()
M = spark.parallelize(0 until m)

.map(j => updateUser(j, Rb, U))

.collect()
}

4 Implementation
Spark is built on top of Mesos [16, 15], a “cluster operat-
ing system” that lets multiple parallel applications share
a cluster in a fine-grained manner and provides an API
for applications to launch tasks on a cluster. This allows
Spark to run alongside existing cluster computing frame-
works, such as Mesos ports of Hadoop and MPI, and share
data with them. In addition, building on Mesos greatly re-
duced the programming effort that had to go into Spark.

The core of Spark is the implementation of resilient dis-
tributed datasets. As an example, suppose that we define
a cached dataset called cachedErrs representing error
messages in a log file, and that we count its elements us-
ing map and reduce, as in Section 3.1:

val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val cachedErrs = errs.cache()
val ones = cachedErrs.map(_ => 1)
val count = ones.reduce(_+_)

These datasets will be stored as a chain of objects cap-
turing the lineage of each RDD, shown in Figure 1. Each
dataset object contains a pointer to its parent and informa-
tion about how the parent was transformed.

Internally, each RDD object implements the same sim-
ple interface, which consists of three operations:
• getPartitions, which returns a list of partition IDs.
• getIterator(partition), which iterates over a partition.
• getPreferredLocations(partition), which is used for

task scheduling to achieve data locality.
When a parallel operation is invoked on a dataset, Spark

creates a task to process each partition of the dataset and
sends these tasks to worker nodes. We try to send each
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file: 

FilteredDataset 
func = _.contains(…) 

errs: 
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Figure 1: Lineage chain for the distributed dataset objects de-
fined in the example in Section 4.

task to one of its preferred locations using a technique
called delay scheduling [26]. Once launched on a worker,
each task calls getIterator to start reading its partition.

The different types of RDDs differ only in how they
implement the RDD interface. For example, for a Hdfs-
TextFile, the partitions are block IDs in HDFS, their pre-
ferred locations are the block locations, and getIterator
opens a stream to read a block. In a MappedDataset, the
partitions and preferred locations are the same as for the
parent, but the iterator applies the map function to ele-
ments of the parent. Finally, in a CachedDataset, the
getIterator method looks for a locally cached copy of a
transformed partition, and each partition’s preferred loca-
tions start out equal to the parent’s preferred locations, but
get updated after the partition is cached on some node to
prefer reusing that node. This design makes faults easy to
handle: if a node fails, its partitions are re-read from their
parent datasets and eventually cached on other nodes.

Finally, shipping tasks to workers requires shipping
closures to them—both the closures used to define a dis-
tributed dataset, and closures passed to operations such as
reduce. To achieve this, we rely on the fact that Scala clo-
sures are Java objects and can be serialized using Java se-
rialization; this is a feature of Scala that makes it relatively
straightforward to send a computation to another machine.
Scala’s built-in closure implementation is not ideal, how-
ever, because we have found cases where a closure object
references variables in the closure’s outer scope that are
not actually used in its body. We have filed a bug report
about this, but in the meantime, we have solved the issue
by performing a static analysis of closure classes’ byte-
code to detect these unused variables and set the corre-
sponding fields in the closure object to null. We omit
the details of this analysis due to lack of space.

Shared Variables: The two types of shared variables in
Spark, broadcast variables and accumulators, are imple-
mented using classes with custom serialization formats.
When one creates a broadcast variable b with a value v,
v is saved to a file in a shared file system. The serialized
form of b is a path to this file. When b’s value is queried
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If we hadn’t broadcast Rb, the map() calls would 
have shipped a “fresh” copy of it each time.
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This, in combination with RDDs durability, 
makes Spark well-suited to iterative algorithms.

It’s also a lot nicer to program in than vanilla 
Map-Reduce!



Useful Spark APIs:

Clustering, classification, regression, linear algebra, 
feature extraction, etc.

MLlib:

GraphX:

Graph processing (stay tuned!)

SparkSQL:

Pandas-style data frames!



Running Spark programs:

1. Compile Scala program, run with spark-submit

2. Write Python script, run with spark-submit

3. Use spark-shell Scala REPL 

4. Use pyspark Python REPL 



Notes on our cluster:

1. Remember to set “--master yarn”

2. Remember to set “--num-executors”

(default is 2!)

(default is local standalone mode!)



Demo time!



Project proposals:

Due April 18

Should include:

1. Research question

2. What data set you’ll be working with

3. What tools you’ll be using

4. Your evaluation plan

5. What you’ll do for a pilot study


