Spark!

Spark’

4/6/2016 CSE 5/624 PSLC

Game plan for today:

What's wrong with Map-Reduce?
Spark: Basic Concepts

Some examples

Spark on our cluster

Project proposals

What's wrong with Map-Reduce?

A different question: what'’s right with Map-Reduce?

- Scales wonderfully

- Nice HDFS abstraction

- Flexible formalism (in some ways)

So, what'’s the problem?

What's wrong with Map-Reduce?

- Primarily good for batch-processing...

iterative algorithms need a lot of thought:

- Clunky API

- Inefficient for iterative algorithms (lots of data

scl

lepping)

Fundamentally, Map-Reduce is a low-level
programming abstraction.

Spark is a higher-level APl for Hadoop
programming:

Rather than explicitly creating discrete M-R
jobs, one codes “as normal” using familiar
functional programming constructs:

val file = spark.textFile("hdfs://...")
val errs = file.filter(.contains("ERROR"))
val ones = errs.map(_ => 1)

val count = ones.reduce(+)

A note on language:

Spark is written in Scala:

= Scala

Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class hierarchies for
maximum code reuse and extensibility, implement their behavior
using higher-order Mungs — '

object MatchTestZ2 extends App {
def matchTest(x: Any): Any = X match {
case 1 => "one"”
case "two" => 2
case y: Int = "scala.Int”

println(matchTest("two"))

val file = spark.textFile("hdfs://...")
val errs = file.filter(.contains("ERROR"))

val ones = errs.map(_=> 1)
val count = ones.reduce(_ +)

O o 1. ssh
import org.apache.spark.EparkContext
import org.apache.spark.SparkContext. _

import org.apache.spark.SparkConf
object SimpleApp {
def main{args: Array[String]) {
val nyt = "/data/nyt/nyt_eng. tok. txt"
val conf = new SparkConf().setAppName("Scala Test")
val sc = new SparkContext{conf)

val nytData = sc.textFile(nyt)

val numAs = nytData.filter(line => line.contains{"a")).count()
val numBs = nytData.filter(line == line.contains{("b")).count()

println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))

A note on language:

Spark is written in Scala:

... but there are APIs in Python, R, etc.

O

&

pyspark SparkContext, SparkConf
nyt =
conf = SparkConf().setAppName(

sc = SparkContext(conf=conf)
nytData = sc.textFile(nyt).cache()

numAs = nytData.filter(lambda s: n s).count()
numBs = nytData.filter(lambda s: n s).count()

print(% (numAs, numBs))

Spark is built around “RDD”s:
Resilient...
... Distributed...

... Datasets.

The key idea: an RDD Jlooks like a single object...

... but is actually distributed across the cluster.

(Using regular HDFS-esque partitioning)

Spark is built around “RDD”s:
Other key ideas:

RDDs are lazily constructed...

... “know” how they were created...

... and can be cached for future use.

RDDs, “under the hood,” comprise:
An array of partitions...

A partition-level function...

A list of parent RDD:s...

A partitioner function (optional)...

I/l

A list of partition-level “preferred locations” (optional).

HdfsTextFile

fil
o path = hdfs /l..

1

Cached Dataset

cachedErrs:

MappedDataset
func= =>1

ones.

errs: F|IteredDataset
func = _.contains(...)

Spark is built around “RDD”s:

RDDs are immutable, and support two kinds
of operation:

transformations and actions

RDD transformations:

1. Occur lazily;

2. Produce another RDD.

Spark is built around “RDD”s:

RDDs are immutable, and support two kinds
of operation:

transformations and actions

RDD actions:

1. Trigger computation;

2. Produce values.

Types of transformations:
map, flatMap, filter, join, split, sort, reduce, etc.

There are two main families of transformation:

“Narrow” transformations live within a single partition
(map, filter, etc.)...

“Wide” transformations require data from multiple
partitions, and so involve a shuffle operation
(reduceByKey, groupByKey, etc.)

Types of actions:
collect, count, first, min, etc.

Actions result in actual computation, and are
synchronous.

val nytData = sc.textFile(nyt path).cache()

val nytWords = nytData.flatMap(.split(“\\s+"))
val nytLongWords = nytWords.filter(.length > 10)
val nytWordPairs = nytLongWords.map((,1))

val nytWordCounts = nytWordPairs.reduceByKey(+)

val topl0 = nytWc.takeOrdered(1l0)
(Ordering[Int].reverse.on(. 2))

topl0: Array[(String, Int)] = Array((information,373606), (administration,315473),
(Republicans,247374), (international,213471), (International,206628), (Association,
179004), (performance,176204), (presidential,173842), (particularly,166205),
(development,155663))

Spark lets you program in parallel very naturally:

// Read points from a text file and cache them
val points = spark.textFile(...)
.map (parsePoint) .cache ()
// Initialize w to random D-dimensional vector
var w = Vector.random (D)
// Run multiple iterations to update w
for (1 <-— 1
val grad
for (p <-

L T D N

t = /LY
spark.accumulatgo# (new Vector (D))

PO T Runs 1n parallel
val s = (1/(l+exp(-p.y*(w dot p.x)))-1)*p.y
grad += s * p.X

w —= grad.value

"Spark: Cluster Computing with Working Sets", Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica. HotCloud 2010. June 2010.

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf

Spark lets you program in parallel very naturally:

// Read points from a text file and cache them
val points = spark.textFile(...)

.map (parsePoint) .cache ()
// Initialize w to random D-dimensional vector
var w = Vector.random (D)
// Run multiple iterations to update w
for (1 <— 1 to ITERATIONS) {

val grad_=_spark.accumulator (new Vector (D))
fo // Runs in parallel
val nomes texp(-p.y*x(w dot p.x)))-1)*p.y
grad += s * p.X

w —= grad.value

"Spark: Cluster Computing with Working Sets", Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica. HotCloud 2010. June 2010.

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf

“Local” vs. “Broadcast” variables:

val Rb = spark)

for (1 <— 1 to ITERATIONS) {
U = spark.parallelize (0 until u)

.map (3 => updateUser

.collect ()
M = spark.parallelize (0 until m)

.map (j => updateUser

.collect ()
}

If we hadn’t broadcast Rb, the map() calls would
have shipped a “fresh” copy of it each time.

"Spark: Cluster Computing with Working Sets", Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica. HotCloud 2010. June 2010.

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf

This, in combination with RDDs durability,
makes Spark well-suited to iterative algorithms.

It's also a lot nicer to program in than vanilla
Map-Reduce!

Useful Spark APIs:

MLIib:

Clustering, classification, regression, linear algebra,
feature extraction, etc.

GraphX:

Graph processing (stay tuned!)

SparkSQL:

Pandas-style data frames!

Running Spark programs:

1. Compile Scala program, run with spark-submit
2. Write Python script, run with spark-submit
3. Use spark-shell Scala REPL

4. Use pyspark Python REPL

Notes on our cluster:

1. Remember to set “—-master yarn”

(default is local standalone mode!)

2. Remember to set “—=-num-executors”

(default is 2!)

Demo time!

Project proposals:
Due April 18

Should include:

1. Research question
2. What data set you'll be working with

3. What tools you’ll be using

4. Your evaluation plan

5. What you’ll do for a pilot study

