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Inverted Indexing, MT, MapReduce



Game plan for today:

Inverted indexing & Map-Reduce

Quick MT overview

Quick overview of inverted indexing

Map-Reduce & MT Model Estimation



Information Retrieval 101:

We have a set of documents...

... and we want to be able to search them by the 
terms that they contain.

Online edition (c)�2009 Cambridge UP

4 1 Boolean retrieval

Antony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

! Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the
play in column d contains the word in row t, and is 0 otherwise.

them as words, but the information retrieval literature normally speaks of
terms because some of them, such as perhaps I-9 or Hong Kong are not usually
thought of as words. Now, depending on whether we look at the matrix rows
or columns, we can have a vector for each term, which shows the documents
it appears in, or a vector for each document, showing the terms that occur in
it.2

To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the
vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a
bitwise AND:

110100 AND 110111 AND 101111 = 100100

The answers for this query are thus Antony and Cleopatra and Hamlet (Fig-
ure 1.2).

The Boolean retrieval model is a model for information retrieval in which weBOOLEAN RETRIEVAL
MODEL can pose any query which is in the form of a Boolean expression of terms,

that is, in which terms are combined with the operators AND, OR, and NOT.
The model views each document as just a set of words.

Let us now consider a more realistic scenario, simultaneously using the
opportunity to introduce some terminology and notation. Suppose we have
N = 1 million documents. By documents we mean whatever units we haveDOCUMENT

decided to build a retrieval system over. They might be individual memos
or chapters of a book (see Section 2.1.2 (page 20) for further discussion). We
will refer to the group of documents over which we perform retrieval as the
(document) collection. It is sometimes also referred to as a corpus (a body ofCOLLECTION

CORPUS texts). Suppose each document is about 1000 words long (2–3 book pages). If

2. Formally, we take the transpose of the matrix to be able to get the terms as column vectors.
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2. Formally, we take the transpose of the matrix to be able to get the terms as column vectors.

Example from Manning et al.’s “Introduction to Information Retrieval”
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Obviously, this approach can only scale so far...

(as it happens, “so far” is actually not very far in this case)

One solution: build an index mapping terms to the 
documents in which they may be found.

Online edition (c)�2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Example from Manning et al.’s “Introduction to Information Retrieval”
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5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Resolving a query now becomes a set operation on the 
posting lists...

... i.e., resolving the query “Brutus AND Calpurnia” would 
simply require intersecting their respective posting lists.

Note the order of the postings!
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terms postings

term1

term2

term3

…d1 p d5 p d6 p d11 p

…d11 p d23d23 pp d59 p d84d84 pp

…d1 p d4 p d11d11 pp d19 p3

… …

1 p 4 p 1111 pp 19 p

Figure 4.1: Simple illustration of an inverted index. Each term is associated with a list of postings. Each
posting is comprised of a document id and a payload, denoted by p in this case. An inverted index provides
quick access to documents ids that contain a term.

4.2 INVERTED INDEXES
In its basic form, an inverted index consists of postings lists, one associated with each term that
appears in the collection.4 The structure of an inverted index is illustrated in Figure 4.1. A postings
list is comprised of individual postings, each of which consists of a document id and a payload—
information about occurrences of the term in the document. The simplest payload is…nothing!
For simple boolean retrieval, no additional information is needed in the posting other than the
document id; the existence of the posting itself indicates the presence of the term in the document.
The most common payload, however, is term frequency (tf), or the number of times the term occurs
in the document. More complex payloads include positions of every occurrence of the term in the
document (to support phrase queries and document scoring based on term proximity), properties
of the term (such as if it occurred in the page title or not, to support document ranking based on
notions of importance), or even the results of additional linguistic processing (for example, indicating
that the term is part of a place name, to support address searches). In the web context, anchor text
information (text associated with hyperlinks from other pages to the page in question) is useful in
enriching the representation of document content (e.g., [107]); this information is often stored in
the index as well.

In the example shown in Figure 4.1, we see that term1 occurs in {d1, d5, d6, d11, . . .}, term2

occurs in {d11, d23, d59, d84, . . .}, and term3 occurs in {d1, d4, d11, d19, . . .}. In an actual implemen-
tation, we assume that documents can be identified by a unique integer ranging from 1 to n, where
n is the total number of documents.5 Generally, postings are sorted by document id, although other
sort orders are possible as well. The document ids have no inherent semantic meaning, although
assignment of numeric ids to documents need not be arbitrary. For example, pages from the same

4In information retrieval parlance, term is preferred over word since documents are processed (e.g., tokenization and stemming)
into basic units that are often not words in the linguistic sense.

5It is preferable to start numbering the documents at one since it is not possible to code zero with many common compression
schemes used in information retrieval; see Section 4.5.

Postings generally include some sort of “payload” or “metadata:”

• Term frequency
• Term positions within the document
• Context surrounding the term
• PoS information
• etc.

DocIDs can be assigned randomly, or according to some scheme 
(documents from same domain get similar IDs, higher PageRank 
gets lower IDs, etc.)



Indexing considerations:

Bottleneck with inverted indexing: having to visit each document.

A “web scale” corpus will involve billions of pages...

... and remember: some pages (news sites, etc.) become “stale” 
quickly, and must be reindexed often.

Can we speed it up by distributing the work?



Of course we can!

This is what MapReduce was invented for...



Of course we can!
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1: class Mapper
2: procedure Map(docid n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t}← H {t} + 1

6: for all term t ∈ H do
7: Emit(term t, posting ⟨n, H {t}⟩)
1: class Reducer
2: procedure Reduce(term t, postings [⟨n1, f1⟩, ⟨n2, f2⟩ . . .])
3: P ← new List
4: for all posting ⟨a, f ⟩ ∈ postings [⟨n1, f1⟩, ⟨n2, f2⟩ . . .] do
5: P.Add(⟨a, f ⟩)
6: P.Sort()

7: Emit(term t, postings P)

Figure 4.2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce. Mappers emit
postings keyed by terms, the execution framework groups postings by term, and the reducers write
postings lists to disk.

Once the document has been analyzed, term frequencies are computed by iterating over all the terms
and keeping track of counts. Lines 4 and 5 in the pseudo-code reflect the process of computing term
frequencies, but hides the details of document processing. After this histogram has been built, the
mapper then iterates over all terms. For each term, a pair consisting of the document id and the term
frequency is created. Each pair, denoted by ⟨n, H {t}⟩ in the pseudo-code, represents an individual
posting. The mapper then emits an intermediate key-value pair with the term as the key and the
posting as the value, in line 7 of the mapper pseudo-code. Although as presented here only the
term frequency is stored in the posting, this algorithm can be easily augmented to store additional
information (e.g., term positions) in the payload.

In the shuffle and sort phase, the MapReduce runtime essentially performs a large, distributed
group by of the postings by term. Without any additional effort by the programmer, the execution
framework brings together all the postings that belong in the same postings list. This tremendously
simplifies the task of the reducer, which simply needs to gather together all the postings and write
them to disk.The reducer begins by initializing an empty list and then appends all postings associated
with the same key (term) to the list. The postings are then sorted by document id, and the entire
postings list is emitted as a value, with the term as the key. Typically, the postings list is first
compressed, but we leave this aside for now (see Section 4.4 for more details). The final key-value
pairs are written to disk and comprise the inverted index. Since each reducer writes its output in
a separate file in the distributed file system, our final index will be split across r files, where r is
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one fish, two fish
doc 1

red fish, blue fish
doc 2

one red bird
doc 3

mapper mapper mapper

d1 2fish

d1 1one

d1 1two

d2 1blue

d2 2fish

d2 1red

d3 1bird

d3 1one

d3 1red

reducer

d1 1two d2 1red d3 1red

Shuffle and Sort: aggregate values by keys

reducer reducerreducer

d1 2fish d2 2 d3 1bird

d1 1one

d1 1two

d2 1blue

d2 1red d3 1

d3 1

Figure 4.3: Simple illustration of the baseline inverted indexing algorithm in MapReduce with three
mappers and two reducers. Postings are shown as pairs of boxes (docid, tf).

the number of reducers. There is no need to further consolidate these files. Separately, we must also
build an index to the postings lists themselves for the retrieval engine: this is typically in the form
of mappings from term to (file, byte offset) pairs, so that given a term, the retrieval engine can fetch
its postings list by opening the appropriate file and seeking to the correct byte offset position in that
file.

Execution of the complete algorithm is illustrated in Figure 4.3 with a toy example consisting of
three documents, three mappers, and two reducers. Intermediate key-value pairs (from the mappers)
and the final key-value pairs comprising the inverted index (from the reducers) are shown in the
boxes with dotted lines. Postings are shown as pairs of boxes, with the document id on the left and
the term frequency on the right.

The MapReduce programming model provides a very concise expression of the inverted
indexing algorithm. Its implementation is similarly concise: the basic algorithm can be implemented
in as few as a couple dozen lines of code in Hadoop (with minimal document processing). Such an
implementation can be completed as a week-long programming assignment in a course for advanced
undergraduates or first-year graduate students [83; 93]. In a non-MapReduce indexer, a significant
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1: class Mapper
2: method Map(docid n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t}← H {t} + 1

6: for all term t ∈ H do
7: Emit(tuple ⟨t, n⟩, tf H {t})
1: class Reducer
2: method Initialize
3: tprev ← ∅
4: P ← new PostingsList
5: method Reduce(tuple ⟨t, n⟩, tf [f ])
6: if t ̸= tprev ∧ tprev ̸= ∅ then
7: Emit(term t, postings P)

8: P.Reset()

9: P.Add(⟨n, f ⟩)
10: tprev ← t

11: method Close
12: Emit(term t, postings P)

Figure 4.4: Pseudo-code of a scalable inverted indexing algorithm in MapReduce. By applying the
value-to-key conversion design pattern, the execution framework is exploited to sort postings so that they
arrive sorted by document id in the reducer.

algorithm, payloads can be easily changed: by simply replacing the intermediate value f (term
frequency) with whatever else is desired (e.g., term positional information).

There is one more detail we must address when building inverted indexes. Since almost all
retrieval models take into account document length when computing query–document scores, this
information must also be extracted. Although it is straightforward to express this computation as
another MapReduce job, this task can actually be folded into the inverted indexing process. When
processing the terms in each document, the document length is known, and can be written out as
“side data” directly to HDFS. We can take advantage of the ability for a mapper to hold state across
the processing of multiple documents in the following manner: an in-memory associative array
is created to store document lengths, which is populated as each document is processed.8 When
the mapper finishes processing input records, document lengths are written out to HDFS (i.e., in
the Close method). This approach is essentially a variant of the in-mapper combining pattern.
Document length data end up in m different files, where m is the number of mappers; these files are

8In general, there is no worry about insufficient memory to hold these data.

Being clever with our 
keys lets the runtime 
do more of the work.

Remember, keys arrive 
at the reducer in sorted 
order, guaranteed.



For very large corpora, it’s important to 
be clever about how we store our 
postings lists on disk...

Out of scope for today, but worth 
reading Lin & Dyer’s summary.



What about retrieval?
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Figure 4.6: Term–document matrix for a toy collection (nine documents,nine terms) illustrating different
partitioning strategies: partitioning vertically (1, 2, 3) corresponds to document partitioning, whereas
partitioning horizontally (a, b, c) corresponds to term partitioning.

in parallel, document partitioning typically yields shorter query latencies (compared to a single
monolithic index with much longer postings lists).

Retrieval under term partitioning,on the other hand, requires a very different strategy.Suppose
the user’s query Q contains three terms,q1,q2, and q3. Under the pipelined query evaluation strategy,
the broker begins by forwarding the query to the server that holds the postings for q1 (usually the
least frequent term). The server traverses the appropriate postings list and computes partial query–
document scores, stored in the accumulators. The accumulators are then passed to the server that
holds the postings associated with q2 for additional processing, and then to the server for q3, before
final results are passed back to the broker and returned to the user. Although this query evaluation
strategy may not substantially reduce the latency of any particular query, it can theoretically increase
a system’s throughput due to the far smaller number of total disk seeks required for each user
query (compared to document partitioning). However, load-balancing is tricky in a pipelined term-
partitioned architecture due to skew in the distribution of query terms, which can create “hot spots”
on servers that hold the postings for frequently occurring query terms.

There are two main strategies for breaking up an index 
onto multiple machines:

1.Document sharding

2.Term sharding

In document sharding, each machine has a portion of the 
documents, and queries are processed by each machine.
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in parallel, document partitioning typically yields shorter query latencies (compared to a single
monolithic index with much longer postings lists).

Retrieval under term partitioning,on the other hand, requires a very different strategy.Suppose
the user’s query Q contains three terms,q1,q2, and q3. Under the pipelined query evaluation strategy,
the broker begins by forwarding the query to the server that holds the postings for q1 (usually the
least frequent term). The server traverses the appropriate postings list and computes partial query–
document scores, stored in the accumulators. The accumulators are then passed to the server that
holds the postings associated with q2 for additional processing, and then to the server for q3, before
final results are passed back to the broker and returned to the user. Although this query evaluation
strategy may not substantially reduce the latency of any particular query, it can theoretically increase
a system’s throughput due to the far smaller number of total disk seeks required for each user
query (compared to document partitioning). However, load-balancing is tricky in a pipelined term-
partitioned architecture due to skew in the distribution of query terms, which can create “hot spots”
on servers that hold the postings for frequently occurring query terms.

There are two main strategies for breaking up an index 
onto multiple machines:

1.Document sharding

2.Term sharding

In term sharding, each machine has a the full posting list 
for a subset of the terms, and only sees the part of the 
query that is relevant to it.



What about retrieval?

There are tradeoffs to each:

Document sharding is simpler to process, but requires a 
lot of wasted work...

- Each shard can process independent queries

- Easy to keep around more per-document information

- Each query must involve every shard (O(k*N) disk 
accesses, for k query terms and N document shards)



What about retrieval?

There are tradeoffs to each:

Term sharding is arguably more efficient to process, but 
requires a lot more complexity.

- Far less time spent doing I/O to access index 
(only k shards are involved for a k-word query)...

- Harder to have per-doc word-level information

- Much more network bandwidth needed (data 
from each matching doc must be aggregated)



What about retrieval?

There’s no single right answer for all cases, but in general, 
document sharding seems better...

... largely due to lower search latency, which is the most 
relevant metric.



Game plan for today:

Inverted indexing & Map-Reduce

Quick MT overview

Quick overview of inverted indexing

Map-Reduce & MT Model Estimation
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
�

am
1
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1 , am

1 |el
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am
1

P (am
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1 )
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j=1
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Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1 )

m�

j=1

P (fj |eaj )

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1 ) =

�m
j=1 P (aj |aj�1).
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
�

am
1

P (fm
1 , am

1 |el
1)

=
�

am
1

P (am
1 |el

1, f
m
1 )

m�

j=1

P (fj |eaj )

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max
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1
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P (fj |eaj )

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
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1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:
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Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max
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In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
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1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
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1 ) =
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203

Language model

Fast, Easy, and Cheap: Construction of Statistical Machine Translation Models with MapReduce, Christopher Dyer et. al., Proc. ACL Workshop on Statistical Machine Translation, pg. 199-207, 2008. slides

http://anthology.aclweb.org/W/W08/W08-0333.pdf
http://anthology.aclweb.org/W/W08/W08-0333.pdf


Quick MT overview:

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000  100000  1e+06  1e+07

Ti
m

e 
(s

ec
on

ds
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:
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Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max
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In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
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1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
�

am
1

P (fm
1 , am

1 |el
1)

=
�

am
1

P (am
1 |el

1, f
m
1 )

m�

j=1

P (fj |eaj )

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1 )

m�

j=1

P (fj |eaj )

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
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1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
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1 ) =
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j=1 P (aj |aj�1).
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:
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Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:
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In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
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over all possible alignments.

2. The HMM alignment model where
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:
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Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:
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In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
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m
1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1 ) =

�m
j=1 P (aj |aj�1).
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Figure 1: Translation quality and training time as a func-
tion of corpus size.

issues, concurrent operations are notoriously chal-
lenging to reason about. In addition, fault tolerance
and scalability are serious concerns on commodity
hardware prone to failure. With traditional paral-
lel programming models (e.g., MPI), the developer
shoulders the burden of handling these issues. As a
result, just as much (if not more) effort is devoted to
system issues as to solving the actual problem.

Recently, Google’s MapReduce framework (Dean
and Ghemawat, 2004) has emerged as an attractive
alternative to existing parallel programming models.
The MapReduce abstraction shields the programmer
from having to explicitly worry about system-level
issues such as synchronization, data exchange, and
fault tolerance (see Section 2 for details). The run-
time is able to transparently distribute computations
across large clusters of commodity hardware with
good scaling characteristics. This frees the program-
mer to focus on actual MT issues.

In this paper we present MapReduce implementa-
tions of training algorithms for two kinds of models
commonly used in statistical MT today: a phrase-
based translation model (Koehn et al., 2003) and
word alignment models based on pairwise lexi-
cal translation trained using expectation maximiza-
tion (Dempster et al., 1977). Currently, such models
take days to construct using standard tools with pub-
licly available training corpora; our MapReduce im-
plementation cuts this time to hours. As an benefit
to the community, it is our intention to release this
code under an open source license.

It is worthwhile to emphasize that we present

these results as a “sweet spot” in the complex design
space of engineering decisions. In light of possible
tradeoffs, we argue that our solution can be consid-
ered fast (in terms of running time), easy (in terms
of implementation), and cheap (in terms of hard-
ware costs). Faster running times could be achieved
with more expensive hardware. Similarly, a custom
implementation (e.g., in MPI) could extract finer-
grained parallelism and also yield faster running
times. In our opinion, these are not worthwhile
tradeoffs. In the first case, financial constraints
are obvious. In the second case, the programmer
must explicitly manage all the complexities that
come with distributed processing (see above). In
contrast, our algorithms were developed within a
matter of weeks, as part of a “cloud computing”
course project (Lin, 2008). Experimental results
demonstrate that MapReduce provides nearly opti-
mal scaling characteristics, while retaining a high-
level problem-focused abstraction.

The remainder of the paper is structured as fol-
lows. In the next section we provide an overview of
MapReduce. In Section 3 we describe several gen-
eral solutions to computing maximum likelihood es-
timates for finite, discrete probability distributions.
Sections 4 and 5 apply these techniques to estimate
phrase translation models and perform EM for two
word alignment models. Section 6 reviews relevant
prior work, and Section 7 concludes.

2 MapReduce

MapReduce builds on the observation that many
tasks have the same basic structure: a computation is
applied over a large number of records (e.g., parallel
sentences) to generate partial results, which are then
aggregated in some fashion. The per-record compu-
tation and aggregation function are specified by the
programmer and vary according to task, but the ba-
sic structure remains fixed. Taking inspiration from
higher-order functions in functional programming,
MapReduce provides an abstraction at the point of
these two operations. Specifically, the programmer
defines a “mapper” and a “reducer” with the follow-
ing signatures (square brackets indicate a list of ele-
ments):

map: �k1, v1� � [�k2, v2�]
reduce: �k2, [v2]� � [�k3, v3�]
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7.3 Perplexity and n-Gram Coverage
A standard measure for language model quality is
perplexity. It is measured on test data T = w|T |

1 :

PP (T ) = e
� 1

|T |

|T |

i=1
log p(wi|wi�1

i�n+1) (7)

This is the inverse of the average conditional prob-
ability of a next word; lower perplexities are bet-
ter. Figure 4 shows perplexities for models with
Kneser-Ney smoothing. Values range from 280.96
for 13 million to 222.98 for 237 million tokens tar-
get data and drop nearly linearly with data size (r2 =
0.998). Perplexities for ldcnews range from 351.97
to 210.93 and are also close to linear (r2 = 0.987),
while those for webnews data range from 221.85 to
164.15 and flatten out near the end. Perplexities are
generally high and may be explained by the mix-
ture of genres in the test data (newswire, broadcast
news, newsgroups) while our training data is pre-
dominantly written news articles. Other held-out
sets consisting predominantly of newswire texts re-
ceive lower perplexities by the same language mod-
els, e.g., using the full ldcnews model we find per-
plexities of 143.91 for the NISTMT 2005 evaluation
set, and 149.95 for the NIST MT 2004 set.
Note that the perplexities of the different language

models are not directly comparable because they use
different vocabularies. We used a fixed frequency
cutoff, which leads to larger vocabularies as the
training data grows. Perplexities tend to be higher
with larger vocabularies.
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Perplexities cannot be calculated for language
models with Stupid Backoff because their scores are
not normalized probabilities. In order to neverthe-
less get an indication of potential quality improve-
ments with increased training sizes we looked at the
5-gram coverage instead. This is the fraction of 5-
grams in the test data set that can be found in the
language model training data. A higher coverage
will result in a better language model if (as we hy-
pothesize) estimates for seen events tend to be bet-
ter than estimates for unseen events. This fraction
grows from 0.06 for 13 million tokens to 0.56 for 2
trillion tokens, meaning 56% of all 5-grams in the
test data are known to the language model.
Increase in coverage depends on the training data

set. Within each set, we observe an almost constant
growth (correlation r2 ≥ 0.989 for all sets) with
each doubling of the training data as indicated by
numbers next to the lines. The fastest growth oc-
curs for webnews data (+0.038 for each doubling),
the slowest growth for target data (+0.022/x2).

7.4 Machine Translation Results
We use a state-of-the-art machine translation system
for translating from Arabic to English that achieved
a competitive BLEU score of 0.4535 on the Arabic-
English NIST subset in the 2006 NIST machine
translation evaluation8 . Beam size and re-ordering
window were reduced in order to facilitate a large

8See http://www.nist.gov/speech/tests/mt/
mt06eval official results.html for more results.
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Abstract

This paper reports on the benefits of large-
scale statistical language modeling in ma-
chine translation. A distributed infrastruc-
ture is proposed which we use to train on
up to 2 trillion tokens, resulting in language
models having up to 300 billion n-grams. It
is capable of providing smoothed probabil-
ities for fast, single-pass decoding. We in-
troduce a new smoothing method, dubbed
Stupid Backoff, that is inexpensive to train
on large data sets and approaches the quality
of Kneser-Ney Smoothing as the amount of
training data increases.

1 Introduction
Given a source-language (e.g., French) sentence f ,
the problem of machine translation is to automati-
cally produce a target-language (e.g., English) trans-
lation ê. The mathematics of the problem were for-
malized by (Brown et al., 1993), and re-formulated
by (Och and Ney, 2004) in terms of the optimization

ê = arg max
e

M�

m=1

�mhm(e, f) (1)

where {hm(e, f)} is a set ofM feature functions and
{�m} a set of weights. One or more feature func-
tions may be of the form h(e, f) = h(e), in which
case it is referred to as a language model.
We focus on n-gram language models, which are

trained on unlabeled monolingual text. As a general
rule, more data tends to yield better language mod-
els. Questions that arise in this context include: (1)

How might one build a language model that allows
scaling to very large amounts of training data? (2)
How much does translation performance improve as
the size of the language model increases? (3) Is there
a point of diminishing returns in performance as a
function of language model size?
This paper proposes one possible answer to the

first question, explores the second by providing
learning curves in the context of a particular statis-
tical machine translation system, and hints that the
third may yet be some time in answering. In particu-
lar, it proposes a distributed language model training
and deployment infrastructure, which allows direct
and efficient integration into the hypothesis-search
algorithm rather than a follow-on re-scoring phase.
While it is generally recognized that two-pass de-
coding can be very effective in practice, single-pass
decoding remains conceptually attractive because it
eliminates a source of potential information loss.

2 N-gram Language Models

Traditionally, statistical language models have been
designed to assign probabilities to strings of words
(or tokens, which may include punctuation, etc.).
Let wL

1 = (w1, . . . , wL) denote a string of L tokens
over a fixed vocabulary. An n-gram language model
assigns a probability to wL

1 according to

P (wL
1 ) =

L�

i=1

P (wi|wi�1
1 ) ≈

L�

i=1

P̂ (wi|wi�1
i�n+1)

(2)
where the approximation reflects a Markov assump-
tion that only the most recent n − 1 tokens are rele-
vant when predicting the next word.
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Figure 2: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

Key/value pairs form the basic data structure in
MapReduce. The “mapper” is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate
key to generate output key/value pairs. This two-
stage processing structure is illustrated in Figure 2.

Under this framework, a programmer need only
provide implementations of map and reduce. On top
of a distributed file system (Ghemawat et al., 2003),
the runtime transparently handles all other aspects
of execution, on clusters ranging from a few to a few
thousand workers on commodity hardware assumed
to be unreliable, and thus is tolerant to various faults
through a number of error recovery mechanisms.
The runtime also manages data exchange, includ-
ing splitting the input across multiple map workers
and the potentially very large sorting problem be-
tween the map and reduce phases whereby interme-
diate key/value pairs must be grouped by key.

For the MapReduce experiments reported in this
paper, we used Hadoop version 0.16.0,3 which is
an open-source Java implementation of MapRe-
duce, running on a 20-machine cluster (1 master,
19 slaves). Each machine has two processors (run-
ning at either 2.4GHz or 2.8GHz), 4GB memory
(map and reduce tasks were limited to 768MB), and
100GB disk. All software was implemented in Java.

3http://hadoop.apache.org/

Method 1

Map1 �A, B� � ��A, B�, 1�
Reduce1 ��A, B�, c(A, B)�
Map2 ��A, B�, c(A, B)� � ��A,� �, c(A, B)�
Reduce2 ��A,� �, c(A)�
Map3 ��A, B�, c(A, B)� � �A, �B, c(A, B)��
Reduce3 �A, �B, c(A,B)

c(A) ��

Method 2

Map1 �A, B� � ��A, B�, 1�; ��A,� �, 1�
Reduce1 ��A, B�, c(A,B)

c(A) �

Method 3

Map1 �A, Bi� � �A, �Bi : 1��
Reduce1 �A, �B1 : c(A,B1)

c(A) �, �B2 : c(A,B2)
c(A) � · · · �

Table 1: Three methods for computing PMLE(B|A).
The first element in each tuple is a key and the second
element is the associated value produced by the mappers
and reducers.

3 Maximum Likelihood Estimates

The two classes of models under consideration are
parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
cording to the maximum likelihood criterion:

PMLE(B|A) =
c(A, B)
c(A)

=
c(A, B)�
B� c(A, B�)

(1)

Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
process given an existing model of that process), we
begin with an overview of how to compute condi-
tional probabilities in MapReduce.

We consider three possible solutions to this prob-
lem, shown in Table 1. Method 1 computes the count
for each pair �A, B�, computes the marginal c(A),
and then groups all the values for a given A together,
such that the marginal is guaranteed to be first and
then the pair counts follow. This enables Reducer3
to only hold the marginal value in memory as it pro-
cesses the remaining values. Method 2 works simi-
larly, except that the original mapper emits two val-
ues for each pair �A, B� that is encountered: one that
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ing splitting the input across multiple map workers
and the potentially very large sorting problem be-
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parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
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Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
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begin with an overview of how to compute condi-
tional probabilities in MapReduce.
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lem, shown in Table 1. Method 1 computes the count
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Reduce1 ��A, B�, c(A,B)

c(A) �

Method 3

Map1 �A, Bi� � �A, �Bi : 1��
Reduce1 �A, �B1 : c(A,B1)

c(A) �, �B2 : c(A,B2)
c(A) � · · · �

Table 1: Three methods for computing PMLE(B|A).
The first element in each tuple is a key and the second
element is the associated value produced by the mappers
and reducers.

3 Maximum Likelihood Estimates

The two classes of models under consideration are
parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
cording to the maximum likelihood criterion:

PMLE(B|A) =
c(A, B)
c(A)

=
c(A, B)�
B� c(A, B�)

(1)

Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
process given an existing model of that process), we
begin with an overview of how to compute condi-
tional probabilities in MapReduce.

We consider three possible solutions to this prob-
lem, shown in Table 1. Method 1 computes the count
for each pair �A, B�, computes the marginal c(A),
and then groups all the values for a given A together,
such that the marginal is guaranteed to be first and
then the pair counts follow. This enables Reducer3
to only hold the marginal value in memory as it pro-
cesses the remaining values. Method 2 works simi-
larly, except that the original mapper emits two val-
ues for each pair �A, B� that is encountered: one that
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will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many �A, B� pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs �A, B�
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).
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Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include �vi, i saw�,
�la mesa pequeña, the small table�, and
�mesa pequeña, small table�; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

202

Fast, Easy, and Cheap: Construction of Statistical Machine Translation Models with MapReduce, Christopher Dyer et. al., Proc. ACL Workshop on Statistical Machine Translation, pg. 199-207, 2008. slides

http://anthology.aclweb.org/W/W08/W08-0333.pdf
http://anthology.aclweb.org/W/W08/W08-0333.pdf


We can use a similar method for 
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Figure 7: Each cell in (a) contains the expected counts for
the word pair �ei, fj�. In (b) the example training data is
marked to show which training instances contribute par-
tial counts for the pair �house, maison�.
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Figure 8: Average per-iteration latency to train HMM
and Model 1 using the MapReduce EM trainer, compared
to an optimal parallelization of Giza++ across the same
number of processors.

trates the relationship between the individual train-
ing instances and the global expected counts for a
particular word pair. After collecting counts, the
conditional probability P (f |e) is computed by sum-
ming over all columns for each f and dividing. Note
that under this training regime, a non-zero probabil-
ity P (fj |ei) will be possible only if ei and fj co-
occur in at least one training instance.

5.2 Experimental Results

Figure 8 shows the timing results of the MapReduce
implementation of Model 1 and the HMM alignment
model. Similar to the phrase extraction experiments,
we show as reference the running time of a hy-
pothetical, optimally-parallelized version of Giza++
on our cluster (i.e., values in Figure 6 divided by
38). Whereas in the single-core implementation the

added complexity of the HMM model has a signif-
icant impact on the per-iteration running time, the
data exchange overhead dominates in the perfor-
mance of both models in a MapReduce environment,
making running time virtually indistinguishable. For
these experiments, after each EM iteration, the up-
dated model parameters (which are computed in a
distributed fashion) are compiled into a compressed
representation which is then distributed to all the
processors in the cluster at the beginning of the next
iteration. The time taken for this process is included
in the iteration latencies shown in the graph. In fu-
ture work, we plan to use a distributed model repre-
sentation to improve speed and scalability.

6 Related work

Expectation-maximization algorithms have been
previously deployed in the MapReduce framework
in the context of several different applications (Chu
et al., 2006; Das et al., 2007; Wolfe et al., 2007).
Wolfe et al. (2007) specifically looked at the perfor-
mance of Model 1 on MapReduce and discuss how
several different strategies can minimize the amount
of communication required but they ultimately ad-
vocate abandoning the MapReduce model. While
their techniques do lead to modest performance im-
provements, we question the cost-effectiveness of
the approach in general, since it sacrifices many of
the advantages provided by the MapReduce envi-
ronment. In our future work, we instead intend to
make use of an approach suggested by Das et al.
(2007), who show that a distributed database run-
ning in tandem with MapReduce can be used to
provide the parameters for very large mixture mod-
els efficiently. Moreover, since the database is dis-
tributed across the same nodes as the MapReduce
jobs, many of the same data locality benefits that
Wolfe et al. (2007) sought to capitalize on will be
available without abandoning the guarantees of the
MapReduce paradigm.

Although it does not use MapReduce, the MTTK
tool suite implements distributed Model 1, 2 and
HMM training using a “home-grown” paralleliza-
tion scheme (Deng and Byrne, 2006). However, the
tool relies on a cluster where all nodes have access to
the same shared networked file storage, a restriction
that MapReduce does not impose.
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will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
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it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many �A, B� pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs �A, B�
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).
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Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include �vi, i saw�,
�la mesa pequeña, the small table�, and
�mesa pequeña, small table�; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.
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Constructing a model involves extracting all the
phrase pairs �e, f� and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
�

am
1

P (fm
1 , am

1 |el
1)

=
�

am
1

P (am
1 |el

1, f
m
1 )

m�

j=1

P (fj |eaj )

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1 )

m�

j=1

P (fj |eaj )

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1 ) =

�m
j=1 P (aj |aj�1).
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Figure 7: Each cell in (a) contains the expected counts for
the word pair �ei, fj�. In (b) the example training data is
marked to show which training instances contribute par-
tial counts for the pair �house, maison�.

3 s

10 s
30 s
90 s

3m20s
20 min
60 min

3 hrs

 10000  100000  1e+06

Ti
m

e 
(s

ec
on

ds
)

Corpus size (sentences)

Optimal Model 1 (Giza/38)
Optimal HMM (Giza/38)

MapReduce Model 1 (38 M/R)
MapReduce HMM (38 M/R)

Figure 8: Average per-iteration latency to train HMM
and Model 1 using the MapReduce EM trainer, compared
to an optimal parallelization of Giza++ across the same
number of processors.

trates the relationship between the individual train-
ing instances and the global expected counts for a
particular word pair. After collecting counts, the
conditional probability P (f |e) is computed by sum-
ming over all columns for each f and dividing. Note
that under this training regime, a non-zero probabil-
ity P (fj |ei) will be possible only if ei and fj co-
occur in at least one training instance.

5.2 Experimental Results

Figure 8 shows the timing results of the MapReduce
implementation of Model 1 and the HMM alignment
model. Similar to the phrase extraction experiments,
we show as reference the running time of a hy-
pothetical, optimally-parallelized version of Giza++
on our cluster (i.e., values in Figure 6 divided by
38). Whereas in the single-core implementation the

added complexity of the HMM model has a signif-
icant impact on the per-iteration running time, the
data exchange overhead dominates in the perfor-
mance of both models in a MapReduce environment,
making running time virtually indistinguishable. For
these experiments, after each EM iteration, the up-
dated model parameters (which are computed in a
distributed fashion) are compiled into a compressed
representation which is then distributed to all the
processors in the cluster at the beginning of the next
iteration. The time taken for this process is included
in the iteration latencies shown in the graph. In fu-
ture work, we plan to use a distributed model repre-
sentation to improve speed and scalability.

6 Related work

Expectation-maximization algorithms have been
previously deployed in the MapReduce framework
in the context of several different applications (Chu
et al., 2006; Das et al., 2007; Wolfe et al., 2007).
Wolfe et al. (2007) specifically looked at the perfor-
mance of Model 1 on MapReduce and discuss how
several different strategies can minimize the amount
of communication required but they ultimately ad-
vocate abandoning the MapReduce model. While
their techniques do lead to modest performance im-
provements, we question the cost-effectiveness of
the approach in general, since it sacrifices many of
the advantages provided by the MapReduce envi-
ronment. In our future work, we instead intend to
make use of an approach suggested by Das et al.
(2007), who show that a distributed database run-
ning in tandem with MapReduce can be used to
provide the parameters for very large mixture mod-
els efficiently. Moreover, since the database is dis-
tributed across the same nodes as the MapReduce
jobs, many of the same data locality benefits that
Wolfe et al. (2007) sought to capitalize on will be
available without abandoning the guarantees of the
MapReduce paradigm.

Although it does not use MapReduce, the MTTK
tool suite implements distributed Model 1, 2 and
HMM training using a “home-grown” paralleliza-
tion scheme (Deng and Byrne, 2006). However, the
tool relies on a cluster where all nodes have access to
the same shared networked file storage, a restriction
that MapReduce does not impose.
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ing instances and the global expected counts for a
particular word pair. After collecting counts, the
conditional probability P (f |e) is computed by sum-
ming over all columns for each f and dividing. Note
that under this training regime, a non-zero probabil-
ity P (fj |ei) will be possible only if ei and fj co-
occur in at least one training instance.
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Figure 8 shows the timing results of the MapReduce
implementation of Model 1 and the HMM alignment
model. Similar to the phrase extraction experiments,
we show as reference the running time of a hy-
pothetical, optimally-parallelized version of Giza++
on our cluster (i.e., values in Figure 6 divided by
38). Whereas in the single-core implementation the

added complexity of the HMM model has a signif-
icant impact on the per-iteration running time, the
data exchange overhead dominates in the perfor-
mance of both models in a MapReduce environment,
making running time virtually indistinguishable. For
these experiments, after each EM iteration, the up-
dated model parameters (which are computed in a
distributed fashion) are compiled into a compressed
representation which is then distributed to all the
processors in the cluster at the beginning of the next
iteration. The time taken for this process is included
in the iteration latencies shown in the graph. In fu-
ture work, we plan to use a distributed model repre-
sentation to improve speed and scalability.

6 Related work

Expectation-maximization algorithms have been
previously deployed in the MapReduce framework
in the context of several different applications (Chu
et al., 2006; Das et al., 2007; Wolfe et al., 2007).
Wolfe et al. (2007) specifically looked at the perfor-
mance of Model 1 on MapReduce and discuss how
several different strategies can minimize the amount
of communication required but they ultimately ad-
vocate abandoning the MapReduce model. While
their techniques do lead to modest performance im-
provements, we question the cost-effectiveness of
the approach in general, since it sacrifices many of
the advantages provided by the MapReduce envi-
ronment. In our future work, we instead intend to
make use of an approach suggested by Das et al.
(2007), who show that a distributed database run-
ning in tandem with MapReduce can be used to
provide the parameters for very large mixture mod-
els efficiently. Moreover, since the database is dis-
tributed across the same nodes as the MapReduce
jobs, many of the same data locality benefits that
Wolfe et al. (2007) sought to capitalize on will be
available without abandoning the guarantees of the
MapReduce paradigm.

Although it does not use MapReduce, the MTTK
tool suite implements distributed Model 1, 2 and
HMM training using a “home-grown” paralleliza-
tion scheme (Deng and Byrne, 2006). However, the
tool relies on a cluster where all nodes have access to
the same shared networked file storage, a restriction
that MapReduce does not impose.
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Figure 2: Illustration of decoder graph and batch-
querying of the language model.

from other features) decides which hypotheses to
keep in the search graph. When using a distributed
language model, the decoder first tentatively extends
all current hypotheses, taking note of which n-grams
are required to score them. These are queued up for
transmission as a batch request. When the scores are
returned, the decoder re-visits all of these tentative
hypotheses, assigns scores, and re-prunes the search
graph. It is then ready for the next round of exten-
sions, again involving queuing the n-grams, waiting
for the servers, and pruning.
The process is illustrated in Figure 2 assuming a

trigram model and a decoder policy of pruning to
the four most promising hypotheses. The four ac-
tive hypotheses (indicated by black disks) at time t
are: There is, There may, There are, and There were.
The decoder extends these to form eight new nodes
at time t + 1. Note that one of the arcs is labeled �,
indicating that no target-language word was gener-
ated when the source-language word was consumed.
The n-grams necessary to score these eight hypothe-
ses are There is lots, There is many, There may be,
There are lots, are lots of, etc. These are queued up
and their language-model scores requested in a batch
manner. After scoring, the decoder prunes this set as
indicated by the four black disks at time t + 1, then
extends these to form five new nodes (one is shared)
at time t + 2. The n-grams necessary to score these
hypotheses are lots of people, lots of reasons, There
are onlookers, etc. Again, these are sent to the server
together, and again after scoring the graph is pruned
to four active (most promising) hypotheses.

The alternating processes of queuing, waiting and
scoring/pruning are done once per word position in
a source sentence. The average sentence length in
our test data is 22 words (see section 7.1), thus we
have 23 rounds3 per sentence on average. The num-
ber of n-grams requested per sentence depends on
the decoder settings for beam size, re-ordering win-
dow, etc. As an example for larger runs reported in
the experiments section, we typically request around
150,000 n-grams per sentence. The average net-
work latency per batch is 35 milliseconds, yield-
ing a total latency of 0.8 seconds caused by the dis-
tributed language model for an average sentence of
22 words. If a slight reduction in translation qual-
ity is allowed, then the average network latency per
batch can be brought down to 7 milliseconds by re-
ducing the number of n-grams requested per sen-
tence to around 10,000. As a result, our system can
efficiently use the large distributed language model
at decoding time. There is no need for a second pass
nor for n-best list rescoring.
We focused on machine translation when describ-

ing the queued language model access. However,
it is general enough that it may also be applicable
to speech decoders and optical character recognition
systems.

7 Experiments

We trained 5-gram language models on amounts of
text varying from 13 million to 2 trillion tokens.
The data is divided into four sets; language mod-
els are trained for each set separately4 . For each
training data size, we report the size of the result-
ing language model, the fraction of 5-grams from
the test data that is present in the language model,
and the BLEU score (Papineni et al., 2002) obtained
by the machine translation system. For smaller train-
ing sizes, we have also computed test-set perplexity
using Kneser-Ney Smoothing, and report it for com-
parison.

7.1 Data Sets
We compiled four language model training data sets,
listed in order of increasing size:

3One additional round for the sentence end marker.
4Experience has shown that using multiple, separately

trained language models as feature functions in Eq (1) yields
better results than using a single model trained on all data.
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