
3/28/2016 CSE 5/624 PSLC

Problem Solving With Large Clusters
What’s the problem, and what resources do we have?

Game plan for today:

Overview of parallel and distributed computing

Quick intro to distributed file systems

Structure of the course

Do you actually need a cluster?

http://cslu.ohsu.edu/~bedricks/courses/cs624/

http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/
http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/

Course Overview
1. Topics Covered
http://www.csee.ogi.edu/

⇠
zak/cs506-pslc

2. Concerning paper discussion
I Focus: Conventional vs. distributed algorithm
I Problem: What is the problem? Why is it important?
I Background: What are the conventional algorithms? You may

ignore the specifics of the application area.
I Distributed Algorithm: Details, assumptions and advantages
I Evaluation: Experimental paradigm, corpus
I Results: Outcomes, analysis and discussion

3. Evaluation
I Assignments
I In-class participation
I Final project

4. Bring laptops for exercises in class.

Game plan for today:

Overview of parallel and distributed computing

Quick intro to distributed file systems

Structure of the course

Do you actually need a cluster?

The problem:

Many things we might want to do
with computers take a long time.

Why?

Trivial answer: they require the
computer to do a lot of work.

The problem:

This can be for two main reasons:

1. We are working with a lot of data

2. We have to do a lot of computations on
each chunk of data.

A common solution: split the work up!

A common solution: split the work up!

1. Do parts of the computation in parallel
(less work per processor)

2. Split the data onto multiple computers
(less data per processor)

Often, we (try to) do both!

Ultimately, it all comes down to feeding
instructions and data to processors:

Single Instruction, Single Data Single Instruction, Multiple Data

Most modern CPUs are SIMD (SSE3, etc.)...

Ultimately, it all comes down to feeding
instructions and data to processors:

Single Instruction, Multiple Data Multiple Instruction, Multiple Data

Some architectures are MIMD, e.g. Intel “Xeon
Phi” and most modern parallel machines.

A single computer can have more than one
CPU...Sharing Data Across Processors

Single bus (symmetric multiprocessing or SMP)

Single bus w/ cache

Cons: CPU bottlenecked by memory access

As a single bus:

As a single bus w/ cache:

Sharing Data Across Processors

Single bus (symmetric multiprocessing or SMP)

Single bus w/ cache

Cons: CPU bottlenecked by memory access

Sharing Data Across Processors: Crossbar

Cons: Too many expensive switches

The question becomes: how to share
memory across many CPUs?

A crossbar topology is simple, but has many
expensive* swtiches.

Sharing Data Across Processors: Crossbar

Cons: Too many expensive switches

The question becomes: how to share
memory across many CPUs?

Expensive in terms of both time and silicon!

The question becomes: how to share
memory across many CPUs?Non-uniform Memory Access (NUMA): A Compromise

E.g.: Intel’s current generation of chips – Nehalem, Westmere, . . .Non-uniform memory access (NUMA) is a
common compromise (Intel Nehalem,
Westmere, etc.).

In the real world, there is never a linear
speedup with an increase in CPUs.

Amdahl’s law states that the maximum
speedup is related to the fraction of a
program’s work that is serial.

T: time taken

n: num. threads

B: proportion of algorithm
that is strictly serial.

Other holdups include cache stalls, disk
latency, etc. etc.

There are also the dreaded “fallacies of
distributed computing” to keep in mind...

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_administrator
http://en.wikipedia.org/wiki/Network_administrator

So, what do we have at CSLU?

Westmere (BigbirdX)

The OHSU bigbird cluster uses Westmere
CPUs; 2x per node.

Each node uses Westmere CPUs; 2x per node
(total of 24 logical cores).

The bigbird cluster has 56 accessible nodes
(bigbirdXX.cslu.ohsu.edu).

Each node has 48 GB of RAM, and all share
a large distributed file system.

Each node uses “Gulftown” CPUs; 2x per
node (total of 16 logical cores).

The bigbird cluster also has 8 additional
nodes (bigbird61-68.cslu.ohsu.edu).

Each node has 16 GB of RAM, and all are
equipped with solid-state storage.

Game plan for today:

Overview of parallel and distributed computing

Quick intro to distributed file systems

Structure of the course

Do you actually need a cluster?

Let’s talk about storage.Hard Disk Drives: 1956 IBM 350 RAMAC

Hard disks are still mechanical !!

Hard Disk Drives: 1956 IBM 350 RAMAC

Hard disks are still mechanical !!
Most hard drives are still mechanical.

Hard Disk
I Hard disk has a number of disks
I Each disk segmented into tracks and sectors

I Disk speed: access time = seek time + latency time
I Seek time: Time required to bring the head to the track
I Latency time: Time required for the sector to reach the head
I Platters spin about 7k to 15k rpm
I Disk-to-buffer about 1Gbits/s, depends on track

Modern SSDs avoid these problems, but
introduce others: Cost, limited life-span, etc.

“Most hard drives are still mechanical.”

Is this still true?

In your laptop: no.

In the data center, a qualified “yes.”

In the data center, a qualified “yes.”

SSDs are:

Much more expensive ($/gigabyte)

Relatively fragile

A whole lot faster*

(depending on your workload, etc.)

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza
Carnegie Mellon University

meza@cmu.edu

Qiang Wu
Facebook, Inc.
qwu@fb.com

Sanjeev Kumar
Facebook, Inc.

skumar@fb.com

Onur Mutlu
Carnegie Mellon University

onur@cmu.edu

ABSTRACT
Servers use flash memory based solid state drives (SSDs) as a
high-performance alternative to hard disk drives to store per-
sistent data. Unfortunately, recent increases in flash density
have also brought about decreases in chip-level reliability. In
a data center environment, flash-based SSD failures can lead
to downtime and, in the worst case, data loss. As a result,
it is important to understand flash memory reliability char-
acteristics over flash lifetime in a realistic production data
center environment running modern applications and system
software.

This paper presents the first large-scale study of flash-based
SSD reliability in the field. We analyze data collected across
a majority of flash-based solid state drives at Facebook data
centers over nearly four years and many millions of operational
hours in order to understand failure properties and trends of
flash-based SSDs. Our study considers a variety of SSD char-
acteristics, including: the amount of data written to and read
from flash chips; how data is mapped within the SSD address
space; the amount of data copied, erased, and discarded by the
flash controller; and flash board temperature and bus power.

Based on our field analysis of how flash memory errors man-
ifest when running modern workloads on modern SSDs, this
paper is the first to make several major observations: (1)
SSD failure rates do not increase monotonically with flash
chip wear; instead they go through several distinct periods
corresponding to how failures emerge and are subsequently
detected, (2) the e↵ects of read disturbance errors are not
prevalent in the field, (3) sparse logical data layout across an
SSD’s physical address space (e.g., non-contiguous data), as
measured by the amount of metadata required to track logical
address translations stored in an SSD-internal DRAM bu↵er,
can greatly a↵ect SSD failure rate, (4) higher temperatures
lead to higher failure rates, but techniques that throttle SSD
operation appear to greatly reduce the negative reliability im-
pact of higher temperatures, and (5) data written by the op-
erating system to flash-based SSDs does not always accurately
indicate the amount of wear induced on flash cells due to op-
timizations in the SSD controller and bu↵ering employed in
the system software. We hope that the findings of this first
large-scale flash memory reliability study can inspire others
to develop other publicly-available analyses and novel flash
reliability solutions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMETRICS’15, June 15–19, 2015, Portland, OR, USA.
ACM 978-1-4503-3486-0/15/06.
http://dx.doi.org/10.1145/2745844.2745848.

Categories and Subject Descriptors
B.3.4. [Hardware]: Memory Structures—Reliability, Test-
ing, and Fault-Tolerance

Keywords
flash memory; reliability; warehouse-scale data centers

1. INTRODUCTION
Servers use flash memory for persistent storage due to the

low access latency of flash chips compared to hard disk drives.
Historically, flash capacity has lagged behind hard disk drive
capacity, limiting the use of flash memory. In the past decade,
however, advances in NAND flash memory technology have
increased flash capacity by more than 1000⇥. This rapid in-
crease in flash capacity has brought both an increase in flash
memory use and a decrease in flash memory reliability. For
example, the number of times that a cell can be reliably pro-
grammed and erased before wearing out and failing dropped
from 10,000 times for 50 nm cells to only 2,000 times for 20 nm
cells [28]. This trend is expected to continue for newer gen-
erations of flash memory. Therefore, if we want to improve
the operational lifetime and reliability of flash memory-based
devices, we must first fully understand their failure character-
istics.

In the past, a large body of prior work examined the failure
characteristics of flash cells in controlled environments using
small numbers e.g., tens) of raw flash chips (e.g., [36, 23, 21,
27, 22, 25, 16, 33, 14, 5, 18, 4, 24, 40, 41, 26, 31, 30, 37, 6, 11,
10, 7, 13, 9, 8, 12, 20]). This work quantified a variety of flash
cell failure modes and formed the basis of the community’s un-
derstanding of flash cell reliability. Yet prior work was limited
in its analysis because these studies: (1) were conducted on
small numbers of raw flash chips accessed in adversarial man-
ners over short amounts of time, (2) did not examine failures
when using real applications running on modern servers and
instead used synthetic access patterns, and (3) did not account
for the storage software stack that real applications need to go
through to access flash memories. Such conditions assumed in
these prior studies are substantially di↵erent from those expe-
rienced by flash-based SSDs in large-scale installations in the
field. In such large-scale systems: (1) real applications access
flash-based SSDs in di↵erent ways over a time span of years,
(2) applications access SSDs via the storage software stack,
which employs various amounts of bu↵ering and hence a↵ects
the access pattern seen by the flash chips, (3) flash-based SSDs
employ aggressive techniques to reduce device wear and to cor-
rect errors, (4) factors in platform design, including how many
SSDs are present in a node, can a↵ect the access patterns to
SSDs, (5) there can be significant variation in reliability due
to the existence of a very large number of SSDs and flash
chips. All of these real-world conditions present in large-scale

Key findings:

Temperature-sensitive

Lots of manufacturing variability

Failure types and frequencies
depend highly on use patterns

Caching, buffering, and wear-
reduction makes diagnosis tricky.

There are many consequences of the
mechanical nature of hard disks:

Reading/writing a small number of large
files is far faster than reading/writing a large
number of small files.

+∆ Moving parts -> +∆ things that can break.

Redundant Arrays of Inexpensive Disks (RAID)

(Patterson, Gibson and Katz, 1987)
I Cost-effective to build capacity with many cheaper disks
I Divide the file into stripes, saved on independent disks
I Better performance by putting all the disks to work
I Compensate for higher failure rates with redundancy or parity
I RAID0: block level striping, zero redundancy, read nX
I RAID1: full mirroring, read nX, write 1x

RAID
I RAID2: bit-level, parity, sync-ed spindles
I RAID3: byte-level, parity, sync-ed spindles

RAID
I RAID4: block-level, dedicated parity
I RAID6: block-level, doubly distributed parity

That’s all well and good if you’ve only got
one machine...

... but what if you need to share a disk array
with more than one machine, over a network?

File System: Spreading Files Across Machines

I Network File System (NFS): File-level access, cache and
validate with server for coherency

I Andrew File System (AFS): Block-level access, cache and
callback promise for coherency

I But, both are subject to network bottlenecks at the server !!

NFS gives file-level access, with
server-side caching and
coherency.

Other network file systems
provide block-level access, etc.

Lustre File System

I Block size tuned to usage
I Big files are better than too many small ones
I E.g: 1 file w/ 160 stripes x 8 TB = 1.48 PB per file

Our cluster uses the Lustre distributed
network file system:

Lustre File System

Lustre File System: Comparison
Lustre holds up well under concurrent load:

Lustre File System: Comparison
Lustre holds up well under concurrent load:

CSLU Lustre File System

18 TB Lustre system (/l2/users/userid)
I MDS: 2 x 4-core CPUs @ 3GHz, 16 GB

I MDT: 15k rpm, 400GB x 15 (6 TB)

I ODS (5): 2 x 4-core CPUs @ 3GHz, 16 GB
I ODT: 7.2k rpm, 1 TB x 6
I Note: Limited backup

Future upgrades are planned!

We’ll be talking more about distributed file
systems/stores throughout the course.

Systems such as Lustre are extensions of
traditional file systems...

... but for truly large data collections, the file
system model can be inadequate.

File systems such as the Google File System
(GFS) and the Hadoop File System (HDFS)
can offer more scalability and reliability.

Google File System

I Fault-tolerance
I Implemented at user-level, provides location-awareness
I Assumptions: high sustained bandwidth > low latency

I Large files are typical
I Large streaming reads and small random reads
I Large sequential writes and small random writes

I No file or directory aliases (hard or soft links)
I Clients can concurrently append to a file efficieintly

GFS was invented at Google to store their
web search index:

Google File System

I Single master, multiple chunkservers
I Files are divided up into chunk, ID-ed by an addres
I Chunkservers manage chunks like local files
I Chunk data replicated for reliability

Google File System: Read Operation

I Client requests file name and byte offset (chunk size)
I Master sends chunk handler, locations of replicas
I Client caches this (how does it maintain coherency?)
I Client reqests file data from closest server

HDFS is essentially an open-source
implementation of GFS.

We’ll be talking more about distributed file
systems/stores throughout the course!

Execute instruction 1 ns

Fetch from L1 cache 0.5 ns

Branch misprediction 5 ns

Fetch from L2 cache 7 ns

Mutex lock/unlock 25 ns

Fetch from main memory 100 ns

Send 2kb over 1Gbps network 20,000 ns

Read 1mb sequentially from memory 250,000 ns

Fetch from new disk location (seek) 8,000,000 ns (20 ms)

Read 1mb sequentially from disk 20,000,000 ns (20 ms)

Roundtrip packet from US to Europe 150,000,000 ns (150 ms)

http://norvig.com/21-days.html

http://norvig.com/21-days.html#answers
http://norvig.com/21-days.html#answers

Game plan for today:

Overview of parallel and distributed computing

Quick intro to distributed file systems

Structure of the course

Do you actually need a cluster?

Do you actually need a cluster?

Single computers these days have a lot of memory...

Is your problem I/O-bound, or CPU-bound?

Do you actually need to fit it all into memory at once?

... and also multiple CPU cores.

If it’s CPU-bound, have you used a profiler?

Don’t forget about caching...

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/
http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

Don’t forget about caching...

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/
http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

Don’t forget about caching...

http://igoro.com/archive/gallery-of-processor-cache-effects/

for (int i = 0; i < arr.Length; i += K) arr[i] *= 3;

http://igoro.com/archive/gallery-of-processor-cache-effects/
http://igoro.com/archive/gallery-of-processor-cache-effects/

Don’t forget about caching...

http://igoro.com/archive/gallery-of-processor-cache-effects/

int steps = 64 * 1024 * 1024; // Arbitrary number of steps
int lengthMod = arr.Length - 1;
for (int i = 0; i < steps; i++)
{
 arr[(i * 16) & lengthMod]++; // (x & lengthMod) is equal to (x % arr.Length)
}

http://igoro.com/archive/gallery-of-processor-cache-effects/
http://igoro.com/archive/gallery-of-processor-cache-effects/

http://igoro.com/archive/fast-and-slow-if-statements-branch-prediction-in-modern-processors/

for (int i = 0; i < max; i++) if (<condition>) sum++;

... and branch prediction!

http://igoro.com/archive/fast-and-slow-if-statements-branch-prediction-in-modern-processors/
http://igoro.com/archive/fast-and-slow-if-statements-branch-prediction-in-modern-processors/

http://igoro.com/archive/fast-and-slow-if-statements-branch-prediction-in-modern-processors/

for (int i = 0; i < max; i++) if (<condition>) sum++;

... and branch prediction!

http://igoro.com/archive/fast-and-slow-if-statements-branch-prediction-in-modern-processors/
http://igoro.com/archive/fast-and-slow-if-statements-branch-prediction-in-modern-processors/

Do you actually need a cluster?

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_administrator
http://en.wikipedia.org/wiki/Network_administrator

Execute instruction 1 ns

Fetch from L1 cache 0.5 ns

Branch misprediction 5 ns

Fetch from L2 cache 7 ns

Mutex lock/unlock 25 ns

Fetch from main memory 100 ns

Send 2kb over 1Gbps network 20,000 ns

Read 1mb sequentially from memory 250,000 ns

Fetch from new disk location (seek) 8,000,000 ns (20 ms)

Read 1mb sequentially from disk 20,000,000 ns (20 ms)

Roundtrip packet from US to Europe 150,000,000 ns (150 ms)

http://norvig.com/21-days.html

http://norvig.com/21-days.html#answers
http://norvig.com/21-days.html#answers

