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ABSTRACT
We consider the task of suggesting related queries to users
after they issue their initial query to a web search engine.
We propose a machine learning approach to learn the prob-
ability that a user may find a follow-up query both use-
ful and relevant, given his initial query. Our approach is
based on a machine learning model which enables us to gen-
eralize to queries that have never occurred in the logs as
well. The model is trained on co-occurrences mined from
the search logs, with novel utility and relevance models, and
the machine learning step is done without any labeled data
by human judges. The learning step allows us to generalize
from the past observations and generate query suggestions
that are beyond the past co-occurred queries. This brings
significant gains in coverage while yielding modest gains in
relevance. Both offline (based on human judges) and online
(based on millions of user interactions) evaluations demon-
strate that our approach significantly outperforms strong
baselines.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation, Retrieval Models

Keywords
search assistance, query suggestion, machine learning, query
log mining

1. INTRODUCTION
Query suggestions are an integral part of the modern search

experience. Here we are concerned with query reformulation
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suggestions that are presented the users after they submit
their query, rather than query completion suggestions. The
latter is useful in helping the user formulate an original query
by aiding in spelling and term selection while typing in the
query. Query reformulation suggestions, on the other hand,
are useful for changing direction once a search query has
been already issued. The needs for such an action could in-
clude disambiguation once the user realizes after inspection
of the results that the concept he had in mind had possi-
bly other stronger meanings different than his. Or, the user
may want to formulate an even more precise and succinct
query to hone in on better answers. It could also involve
modification of the information need based on the informa-
tion gained by inspection of the search result, to either dive
deeper into research or move to a different aspect of a task.
The needs are much varied.

Past scientific research is focused on a few main meth-
ods to address most user needs for query reformulation. A
large group of methods are based on leveraging the “wisdom
of crowds” by analyzing the search logs. Another group of
methods use term semantics to derive new queries from ex-
isting ones. The former group of methods can be divided
into those that exploit query co-occurrences in the search
logs, and those that leverage the document click informa-
tion such as random walks over query-document bipartite
graphs. In the latter group, a number of query synthesis
methods exist, either synthesizing new queries with active
user participation, or directly without any user input. We
delve into a review of these existing methods in the related
works section, and contrast them with our method.

There are a few fundamental shortcomings of these meth-
ods, (i) the utility of a query reformulation suggestion to the
user’s search task is indirectly handled (ii) all co-occurrences
in the query logs are treated equally, without modeling the
probability that the pair of queries belong to the same search
task or not (iii) models that are solely based on collocated
queries in the past logs will have limited coverage.

In this paper, we develop a machine learning framework
which addresses the above shortcomings. First, the utility
argument is handled explicitly by building a utility model
that takes into account positions of URLs that are common
to result sets of the original query and the suggestions. Sec-
ond, we propose an implicit task boundary method to model
whether a following query is a continuation of the preceding
queries; as a result, co-occurrences in the search logs are not
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treated equally, but weighted with the probability that they
belong to the same task. Finally, we learn to predict the
utility of suggestion by using a rich feature space including
lexical and result set features that capture the salient fac-
tors of why a suggestion could be useful to the user given his
initial query, rather than only relying on the observed query
co-occurrences in the past. We train this machine learning
model with a learning target derived from the past query co-
occurrences rather than relying on human judgments. This
allows us to generalize the knowledge trained on the past
query co-occurrences and the machine learned model can
generate both relevant and useful (query,suggestion) pairs
that have never observed in the past logs, leading to a sig-
nificant increase in coverage. Also, it avoids the costly and
time consuming human labeling process. Furthermore, the
machine learning framework also has the advantage of pro-
viding the apparatus that can effectively blend disparate
sources of query suggestion candidates such as those based
on wisdom of crowds and those based on synthesis, which
has been addressed in an ad-hoc fashion at best so far.

In the next section, we review the existing literature and
contrast our method with related works. In Section 3, we
describe the proposed framework in more detail. Section
4 dives into the description of how we address utility ex-
plicitly by constructing a suitable learning target. Section 5
describes the feature space, the training set and the learning
method. Section 6 talks about one strength of this method
which can score and blend in synthetic suggestion candidates
as well as query extensions observed in the search logs that
are too rare for the collocation based methods to capture.
These are followed by experimental results in section 7 and
conclusions in section 8.

2. RELATED WORK
Leveraging “wisdom of crowds” has been very popular in

generating query suggestions. A large set of research articles
focused on leveraging the session structure and other infor-
mation to find alternate queries to suggest. The main idea
is to find pairs of queries that frequently co-occur in users’
search sessions and use them as suggestions for each other.
For example, Huang et al. [10] find such co-occurrences
and rank the suggestions for an input query by frequency
of co-occurrence, freq(q1, q2), where q1 is the input query
and q2 is a suggestion candidate (within a certain time win-
dow in the same user session). Jensen et al. [12] considered
point-wise mutual information (PMI) along with frequency
of co-occurrence. PMI is defined as

pmi(q2, q1) = log

(
Pr(q2, q1)

Pr(q1) Pr(q2)

)
(1)

For a particular q1, the Pr(q1) term is constant for all the
possible suggestion candidates, and ordering given by PMI
only depends on the ratio of the frequency of q2 conditioned
on q1 divided by the marginal frequency of q2. While, fre-
quency of co-occurrence is not a test of dependence, PMI
is a valid test of independence. However, PMI favors rare
events [24]. A preferred test of collocations in text corpora
has been G2 log-likelihood-ratio (LLR), introduced to NLP
by Dunning [7]. Moore gives several formulations of G2 in
[17] and shows it is equivalent to mutual information (MI)

mi(q2, q1) = Pr(q2, q1)pmi(q2, q1) + Pr(q2, q1)pmi(q2, q1)
+Pr(q2, q1)pmi(q2, q1) + Pr(q2, q1)pmi(q2, q1)

(2)

where q denotes the set of all queries except q. MI addresses
the bias of PMI by taking into account the probabilities
of the complement events as well. LLR was found to be
among the best performing statistical tests of dependence by
Thanopoulos et al. [24] for extracting collocations. LLR was
used by Jones et. al. [13] as a feature in a machine learning
framework to expand queries for matching advertisements
to an input query.

Boldi et al. [3] move to a more structured processing
of the sessions by building a query-flow graph where the
nodes are queries and edges are associated with weights that
capture how likely a user is to move from one query to the
next within a session. Then, neighbors with the largest edge
weights are selected as suggestions for an input query. In [2],
they also classified the transitions as specializations which
are essentially query extensions, generalizations which are
usually contractions, errors corrections and lateral moves,
and use these categories for selecting suggestions for different
purposes.

Another group of methods focused on leveraging the clicked
documents by building a query-document bipartite graph.
Assumption here is that similar queries have larger overlap
between their respective clicks. For example, Mei et al. [15]
use a random walk over the bipartite graph to find similar
queries. Beeferman et al. [1] use hierarchical agglomerative
clustering iteratively to find groups of queries that are simi-
lar and can be used as suggestions for one another, however,
this is expensive. Baeza-Yates et al. [21] used an efficient
k-means algorithm to find similar queries, but it requires the
number clusters ahead of time. Sadikov et al. [22] combined
the query-flow graphs with document click information to
find query suggestions.

Query synthesis methods looked into generating sugges-
tions by leveraging search logs as well as external informa-
tion sources. Szpektor et al. [23] use a template generation
method by leveraging WordNet [16]. Use of all token bound-
aries in segmentation of the queries leads to many poor sug-
gestion candidates. Jain et al. [11] use Conditional Random
Fields to segment to queries, yielding better results. They
also use a machine learned stage to filter bad suggestions
but they do not address blending the suggestions with other
methods such as those based on session analysis. Both in [11]
and [13] the machine learning for suggestion scoring is based
on editorial labels, whereas in our method we use probabil-
ities estimated from the query logs as regression target.

3. PROPOSED FRAMEWORK
This section gives an overview of our proposed pipeline.

The detailed description of each component follows in the
subsequent sections. Below is a brief summary of each com-
ponent.

• Target Generation: The first step deals with esti-
mating a scoring function that measures how useful
and relevant is a follow-up query to a given query. We
estimate this score by a probabilistic utility function
that relies on the query co-occurrence. We discuss dif-
ferent definitions of the query co-occurrence in the next
section. The scores are used as the target values in
our machine learning model. This is a discriminating
advantage of our method and one of our main contri-
butions since it saves the costly and time consuming
human labeling process.
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• Features: The next step of the pipeline is to create
the feature vector representation of each query pair in
the data. We use two sets of features, namely lexi-
cal and result set based features. They are designed
to capture the semantic similarity and helpfulness of
the suggestion to the original query which is formally
defined in the following section. Since the features do
not depend on the session logs, it allows our system to
handle synthetically generated suggestion candidates.
This is another differentiator of our approach when
learning query suggestions.

• Ranking Model: Once the target scores are esti-
mated and the features are generated, we perform re-
gression using Gradient Boosted Decision Tree (GBDT).
This model enables us to rank the suggestion candi-
dates for a given a query, and eliminate the irrelevant
and useless ones.

• Candidates: The candidate suggestions we tested the
ranking model on come from various sources includ-
ing query logs. However, query logs provide only lim-
ited number of candidates especially for rare queries.
To address the sparsity, we use additional candidate
queries that are either synthetically generated or ex-
tended queries. Our feature space is appropriate to
blend in such candidates with those obtained from
query logs.

4. TARGET GENERATION

4.1 Query Co-occurrence
The targets to be used in our machine learning model

depend on Pr(q2, q1), namely the probability of query co-
occurrence. In this paper, we define query co-occurence as
when two queries are manually1 issued by the same user
within the same session. We define the user session as all
the user activity within a time window limited by 10 minutes
of inactivity. Nevertheless, the models we develop in this
paper do not strictly depend on this definition and can be
used with other timeout limits or other definitions of user
session.

A first design choice is whether to consider all pairs of
queries within the same session or consecutive queries only.
The latter option makes the query co-occurrence set robust
to intent drift in the search session. The intent drift can be
defined as the gradual change in user’s intent as the search
session progresses, and perhaps can be explained best by an
example. Here is a real search session: “lost cast”→ “dexter
cast” → “michael c. hall” → “michael c. hall cancer”. The
argument against restricting to consecutive pairs is that the
majority of sessions do not have such intent drift and it
results in a significant decrease in coverage. We will provide
experiments with both of these choices.

The simplest approach for scoring suggestion candidates
is to measure the reformulation probabilities from the fre-
quency counts in the logs and pick the queries with the high-
est reformulation probabilities Pr(q2 | q1),

Pr(q2 | q1) = Pr(q2, q1)

Pr(q1)
(3)

1We ignore queries suggested by the system because they
may introduce a presentation bias.

Here Pr(q2, q1) is the probability that q2 occurs after q1
within the same session and Pr(q1) is the marginal prob-
ability of q1. There are two problems with this approach.
First it could be that the query q2 is unrelated to q1. This
happens when q1 and q2 belong to different tasks that the
user wants to solve. One way to address that issue would be
to consider only queries within the same task, but this re-
quires a system for detecting task boundaries [2] which itself
can be prone to errors. In this paper we propose a solution
that does not rely on task boundary detection. The second
problem is that the result page associated with query q2 may
not be useful, for example if the documents that q2 retrieves
are identical of those of the original query q1.

For these reasons, we say that, given a query pair (q1, q2),
the query q2 was a helpful reformulation of query q1 if and
only if the following two conditions are satisfied:

1. The query q2 is a continuation of q1. If the query
q2 is the beginning of a new task and has nothing to
do with q1, we should not consider q2 to be a helpful
reformulation for q1.

2. The query q2 has a positive utility, that is the search
results returned for that query are useful to the user.

The details of these two conditions are described in the
next two sections.

4.2 Utility of Reformulations
When trying to assess the utility of a reformulation, a

simple criterion is to say that reformulations that lead to
a click in the result page of q2 are useful, and the others
are not useful. In the extreme case, a query for which the
search engine does not return any results cannot be a good
suggestion by definition.

But reformulations followed by a click are not always use-
ful. Consider the following query reformulations that ap-
pear frequently in query logs “bank of america”→ “bank of
america online” or “facebook”→ “facebook login”. Although
co-occurrences like these lead to a click on the result set of
the second query q2, they do not likely take the user to a
destination URL that is not already directly accessible from
the original query q1. We thus define a reformulation to
be useful only if it leads to a click on a URL that either is
not existing in the search result page of q1 or that is ranked
higher than that in the search result page of q1.

For formalizing this idea we compare the ranks of the same
URLs in q1 and q2 (if any) and use the rank discounts that
DCG uses. Let Dc be the set of clicked documents on the
result page of q2 and r(q, d) returns the rank of the given
document d ∈ Dc for the given query q and returns + inf if
the URL is not ranked. The total difference in discounts of
the clicked documents Δ is defined as

Δ =
∑
d∈Dc

(
1

log r(q2, d)
− 1

log r(q1, d)

)
(4)

When there was a click on q2, the reformulation is defined
to be useful if Δ > 0. This occurs only if at least one of the
two conditions above holds for one of the clicked url.

In addition to the condition in (4), we also consider the
queries that can address the user need directly in the search
result page (without any clicks) as useful [5]. For example,
weather information in the weather direct answer module
for the query “lake tahoe weather”, or current stock quote
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Table 1: Effect of the implicit session model (see
section 4.3).

Pr(q2 | q1)
facebook 0.0286
ebay 0.0244
amazon 0.0225
rei 0.0214
nordstrom 0.0191

Pr(q2 | q1, c = 1)
rei 0.0431
nordstrom 0.0342
dicks 0.0307
columbia 0.0281
macys 0.0274

q1 = northface

Pr(q2 | q1)
facebook 0.0794
chase 0.0415
wells fargo 0.0227
capital one 0.0223
google 0.0185

Pr(q2 | q1, c = 1)
chase 0.0993
capital one 0.0558
wells fargo 0.0530
american express 0.0404
bank of america online 0.0281

q1 = bank of america

and other details in the finance module for the query“amzn”
are examples of such queries, where the user does not need
any clicks to get to the desired information. Therefore in
addition to the condition in (4), if there is no further query
reformulation in the session, and if the final query of the
session contains such direct answer modules, we consider
these queries to be useful reformulations as well.

To sum up, we define a query reformulation to be useful if
either there was at least a click on q2 and Δ > 0; or there was
no click on q2, the result page of q2 contained a direct answer
module and there was no further reformulation afterwards.

4.3 Implicit Task Boundary Detection
Remember that we want to compute the probability that

q2 follows q1 under the condition that q2 is a continuation
of q1 (denoted by c = 1) and that it is useful (denoted by
u = 1) as defined in the previous section; that is,

Pr(q2 | q1, c = 1, u = 1). (5)

First, note that u is an observed variable, while c is not. It is
in particular straightforward to compute Pr(q2 | q1, u = 1)
by simply filtering out the pairs for which u = 0. In the
rest of this section, we will thus assume that all probabili-
ties are implicitly conditioned on u = 1 and will drop that
conditioning from the equations.

The following equation holds:

Pr(q2 | q1) = Pr(q2 | q1, c = 0)Pr(c = 0 | q1)
+ Pr(q2 | q1, c = 1)Pr(c = 1 | q1). (6)

Let us denote µ = Pr(c = 0 | q1). In the case that the
user issues an unrelated query (c = 0), q1 and q2 are inde-
pendent and thus Pr(q2 | q1, c = 0) = Pr(q2 | c = 0) that we
approximate as the marginal distribution Pr(q2). Equation
(6) becomes:

Pr(q2 | q1) = µPr(q2) + (1− µ) Pr(q2 | q1, c = 1). (7)

In equation (7), both Pr(q2 | q1) and Pr(q2) are known
distributions and the distribution that we want to compute
is Pr(q2 | q1, c = 1). At a high level, this can be achieved
by subtracting µPr(q2) from Pr(q2 | q1). But we cannot
do this subtraction naively as this could lead to negative

probabilities. The correct way of computing Pr(q2 | q1, c =
1) is a maximum likelihood estimation as explained below.

Let us consider for now that µ is known and fixed. For a
given query q1, let us denote the n unique queries q2 that co-
occured with q1 as q1, . . . , qn and let Nqi be the number of
co-occurences. With these notations, we have that Pr(q2 =
qi | q1) ∝ Nqi . Finally, let pi = Pr(q2 = qi | q1, c = 1) be
the probabilities that we want to evaluate. The maximum
likelihood estimate can be formulated as the solution of the
following optimization problem:

max
pi

n∑
i=1

Nqi log[ µ Pr(q2 = qi) + (1− µ) pi ], (8)

under constraints,∑
i

pi = 1, pi ≥ 0.

In practice, in order to avoid solving a constrained opti-
mization problem, we perform the following change of vari-
ables,

pi =
exp(xi)∑
j exp(xj)

,

and we are left with a convex and unconstrained optimiza-
tion problem on xi which can be solved using standard op-
timization techniques such as non-linear conjugate gradient
descent.

Note that in the extreme case µ = 0, the optimal solution
of (8) is pi = Nqi/

∑
j Nqj = Pr(q2 = qi | q1), which concurs

with equation (7).
The only part left is how to select, for each q1, µ = Pr(c =

0 | q1). We use the following intuition: Pr(q2) has a very
large entropy, but the entropy of Pr(q2 | q1, c = 1) should
be much smaller because there are only a limited number
of queries that users are likely to type as a continuation of
q1. Our heuristic to select µ is to find the value such that
the resulting distribution pi has minimum entropy. On top
of this entropy criterion, we add a Beta(1,10) prior on µ,
reflecting that for most queries q1, the following query q2 is
unrelated (large µ).

The importance of conditioning on c = 1 is illustrated in
table 1. Without this conditioning, irrelevant but frequent
queries such as “facebook” tend to have a high Pr(q2 | q1)
value.

5. MACHINE LEARNING
This section first discusses the feature space that the rank-

ing model uses and then the training process.

5.1 Features
We use two main categories of features: lexical features

and result set features as shown in Tables 2 and 3. Most of
the features are intuitively simple and the short descriptions
are enough, and the rest is detailed here. We do not use ses-
sion log features because they are not defined for synthetic
suggestions as well as other candidate suggestions.

The lexical features use the query strings themselves, like
number of words in each query, number of words or charac-
ters they share in the beginning or at the end, and Leven-
shtein distance [14] between the two queries.

In the result set features, there are mainly two types:
those that consider the quality of the results and those that
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Table 2: Lexical features

Feature Short Description
LEV Levenshtein distance between q1 and q2
LQ1 length of q1
LQ2 length of q2
LDIFF LQ1-LQ2
ABSLDIFF abs(LDIFF)
ABSLDIFFN ABSLDIFF/LQ1
NW1 number of tokens in q1
NW2 number of tokens in q2
COMMONW number of tokens in common in q1 and q2
COMMONWN COMMONW/NW1
COMMONWP tokens in common in the beginning
COMMONWS tokens in common at the end
COMMONCP characters in common in the beginning
COMMONCS characters in common at the end

consider the overlap of the two result sets. For assessing
the quality of the results we use scores given by a learning
to rank system (LTR), but any other relevance score such
as BM25 could have been used. Queries that have better
results should have higher average LTR scores. We use the
LTR scores themselves, as well as the difference and the ra-
tio, intuitively, a high quality query suggestion should have
good results, even better if it has better results than the
original query, which creates assisted paths to relevant and
well formed queries.

Another group of features is the number of common URLs
and domains in top K ranks. These aim to determine the
overlap in the result sets of q1 and q2, which has been used
as a query-pair level relevance metric [20, 8]. We typi-
cally expect the predictions to be high when the values of
these features are in a medium range: when the overlap be-
tween queries is too small, they are probably not related;
and when it is too large, the query q2 does not contain any
new information relative to q1 (see section 4.2). Number
of common URLs gives a strong signal but it is non-zero
for only a very small portion of query pairs. To overcome
this sparsity issue, we also use the number of common do-
mains. One clear observation is that having results from
the same domain is much more informative if the domain
is a tail one. As the domain becomes more generic such as
wikipedia.org or cnn.com having such a domain in com-
mon becomes less meaningful. To capture this intuition, we
use inverse query frequency (IQF) [6], similar to the inverse
document frequency well-known in TF-IDF. IQF of a given
domain d is

IQF(d) = log

( |Q|
|q : d ∈ q|

)
(9)

In words, this is the log of the ratio of number of all queries
to the number of queries that lead to at least one result with
the given domain d. We generate another set of features
using the sum of IQF of the common domains in top K
ranks.

Result set aboutness: Aboutness vector similarity is
by far the most important (and also the most complicated)
result set feature that we use and merits special attention.
The problem with the result set overlap based measures is
that although they are effective at identifying queries that
are very close in meaning (almost synonymous), the overlap
drops very sharply to zero when the compared queries are
relevant, but not almost identical in meaning. In the con-

Table 3: Result set features

Feature Short Description
LTR11 LTR score of the top result for q1
LTR21 LTR score of the top result for q2
LTR15 average LTR score at top 5 for q1
LTR25 average LTR score at top 5 for q2
LTR110 average LTR score at top 10 for q1
LTR210 average LTR score at top 10 for q2
LTRRATIO1 LTR11/LTR21
LTRDIFF1 LTR11-LTR21
LTRRATIO5 LTR15/LTR25
LTRDIFF5 LTR15-LTR25
LTRRATIO10 LTR110/LTR210
LTRDIFF10 LTR110-LTR210
COURLCOUNT1 boolean, URLs in top result are the same
COURLCOUNT5 number of the same URLs in top 5
COURLCOUNT10 number of the same URLs in top 10
CODOMAINCOUNT1 boolean, domains of the top results are the same
CODOMAINCOUNT5 number of same domains in top 5
CODOMAINCOUNT10 number of same domains in top 10
CODOMAINIQF1 IQF of of the domain at top result, if the same
CODOMAINIQF5 total IQF of the common domains in top 5
CODOMAINIQF10 total IQF of the common domains in top 10
ABOUTNESS cosine similarity over the aboutness vectors

text of query suggestions, it is important to identify relevant
queries not only almost identical ones. CODOMAINIQF solves
this problem up to some extent. Yet, one needs compare
not only whether the pair of queries return the same results,
but also whether the two queries have results that are not
identical but are about the same or similar concept. This
will give an idea on the semantic relation between a pair of
queries.

For example, “toyota prius” and “toyota yaris” are quite
related and would be considered good suggestions although
have no results in common in top 10, based on the results
returned by a web search engine. Hence, the result set over-
lap is insufficient to assess relevance. This particular one is
an example that CODOMAINIQF cannot also handle, because
although the queries are quite relevant, the common do-
mains that they have are quite popular domains with low
IQF scores (toyota.com, autos.yahoo.com, autos.msn.com,
wikipedia.org).

To build a semantic similarity metric, we construct an
aboutness vector of each query, which can be considered as a
bag-of-words representation based on the web results, which
consists of the concepts—that are part of a predefined con-
cept dictionary—in the documents returned for this query.
This is based on previous work [19] which computed for each
concept and each document an aboutness score defined as
the probability that a user interested in this concept would
find the document relevant. Algorithm 1 explains how to
extend the computation of this aboutness score from docu-
ments to query. The score for a query is a weighted sum of
the scores of the documents returned for that query, where
the weights put more emphasis on documents ranked higher.
Finally the aboutness similarity of a query pair is the cosine
similarity between the corresponding aboutness vectors. Ta-
ble 4 shows examples of queries, and their top 20 concept
terms ranked in descending order with respect to S(t), the
aboutness score of the concept term t. Although quite re-
lated, the pairs of queries presented here have zero results
in common.
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Algorithm 1 Algorithm to compute the aboutness vector

Require: Concept dictionary D, query q.
1: Retrieve set R of top-k results for q.
2: for concept t ∈ D do
3: S(t) = 0
4: for i = 1, .., k do
5: d = i-th document in R.
6: if concept t is in d then
7: a = aboutness score of concept t in D [19].
8: S(t) = S(t) + 0.9i−1a.
9: end if
10: end for
11: end for
12: Set S(t) to 0 for the concepts t that are not in the top 20

highest scores.
13: Aboutness vector: a(q) := [. . . , S(t), . . . ]

Table 4: Examples of the aboutness vector

Query Terms in the aboutness vector (or-
dered)

iphone 4 iphone, store, 4, camera, phone, apps, inc,
facetime, mode, recording, software, 3gs,
resolution, battery, shop, network, ios, 3g,
broadband, ipod

blackberry storm blackberry, smartphone, verizon, touch-
screen, 3g, storm, rim, blackberry, blackberry
curve, iphone, vodafone, blackberry pearl,
battery, apps, gps, camera, 2, battery life,
gsm, research in motion

toyota prius hybrid, car, prius, toyota, mpg, photo, price,
sales, specs, vehicle, yaris, cars, review, re-
views, msrp, specification, milage, model,
economy, research

toyota yaris yaris, hatchback, car, price, hybrid, toyota,
models, spec, mpg, liftback, dealer, model,
vehicles, review, photo, reviews, city, prius,
transmission, vehicle

5.2 Learning
We first compute all probabilities of co-occurences Pr(q1, q2)

based on one year of a commercial search engine logs. For
each query pair, we use the utility and the implicit task
boundary detection models to compute the training targets
Pr(q2 | q1, c = 1, u = 1), and the features as explained above.

Since training a model on all query pairs would be time
consuming, the pairs are subsampled as follows. We first
select a subset of queries q1. Each query q1 is included
in that set with probability min(1, c1 Pr(q1)), where c1 is
a constant. This results in a set of 13,220 queries q1. Sim-
ilarly, for each q1, we select a subset of q2 with probability
min(1, c2 Pr(q2 | q1)). This sampling insures, at both levels,
that the head queries are selected as well as some of the tail
queries. The median size of q2 for a given q1 is 30 and the
total number of training instances is 382,740.

The learning algorithm is Gradient Boosted Decision Trees
(GBDT) [9]. All the hyperparameters of this algorithm—
number of trees, number of nodes, shrinkage factor—are
tuned on a separate validation set.

6. SUGGESTION CANDIDATES
We review in this section the three different sources of

candidates that will be scored by our model.

6.1 Query logs
The most obvious source of candidates come from the co-

occurences in the logs. In order to reduce the number of

suggestions, for head queries in particular, we only consider
the queries q2 which co-occured at least 3 times with q1.

But relying only on query logs still limits the coverage of
query suggestions and many queries with a low query log fre-
quency will remain with a few or no suggestions. To further
increase the coverage, we use additional sources of infor-
mation as well, and the rest of this section briefly presents
these sources; synthetic suggestions [11], and most frequent
specializations.

6.2 Synthetic Suggestions
Here we use a recent work on a synthetic query suggestion

generation method that combines a number of unit level
operations such as dropping words or several ways of word
replacements, to build synthetic query suggestions. Below
we give a very brief summary of the method, and for further
details please refer to the original paper [11]. Also, note that
there is nothing in the relevance model or the feature space
that is specifically tuned for this particular method, and
one could have used any other query suggestion generation
method as well [16, 23]. This is one of the biggest advantages
of the proposed framework since it is flexible to work with
any type of suggestion candidates since the features do not
require historical data from the past session logs.

The first step of the synthetic query generation method we
use is a unit importance model, which segments the query
into units and assigns importance weights to each unit. Af-
terwards, less important units of the query are dropped, or
replaced with other contextually relevant units. The unit re-
placements come from sources like: (i) queries that co-occur
frequently (same as in pmi, llr) (ii) phrases from queries
that lead to clicks to same URLs (“thanksgiving recipe”
and “turkey recipe” lead to clicks on same documents, then
“thanksgiving” and “turkey” are substitutable units in the
context of “recipe”).

Probably the best way to briefly explain how the synthetic
query generation works is walking through a few examples.
The query “big lots store” does not have many good sugges-
tions as compared to“big lots”, due to much lower frequency.
Here, after the importance model decides the term “store”
can be dropped, it brings the queries that are frequently co-
occurring with “big lots” as suggestions for the query “big
lots store”. The query “cost cutters new jersey” does not
have any suggestions, again due to low frequency. The im-
portance model decides“cost cutters”is more important, and
drops “new jersey”. Queries that frequently co-occur with
“cost cutters” are identified and the dropped place name is
added back to these to generate synthetic suggestions like
“supercuts new jersey”, “great clips new jersey”. For details
on the importance models determines which terms to drop
and so on, please refer to the original paper [11].

6.3 Most Frequent Extensions
A significant portion of the query reformulations are ex-

tensions, where the user adds more terms to the original
query. Even in the cases without a reliable co-occurrence
signal, in many cases the most frequent queries that contain
the current query can be relevant and useful suggestions. In
fact, this idea also has been the backbone of the query com-
pletion features in the search industry. The drop-down table
that suggests completions of the query as the user is typing
is based on the most frequent queries that contain the user
entered portion of the query.
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We will use up to 20 most frequent queries that contains
the original query as a suggestion source, but with one mod-
ification; we use a word boundary condition to bring these
completions where the query is a full word, so that if the
query is “awk” it is not completed to “awkward family pic-
tures” or “awkward tv moments” as it would in query com-
pletion, but rather bring suggestions like “awk example” or
“awk tutorial”.

Although it does not bring nonsensical queries as in the
synthetic suggestions method, this can also bring many ir-
relevant suggestions and again cannot be used directly. For
example for the query “dream”, among many good sugges-
tions like “dream interpretations” or “dream dictionary” this
also brings“dream theater”, a progressive rock band that has
nothing to do with the meaning of the original query. We
use the machine learning model to get rid of such irrelevant
suggestions.

7. EVALUATION
We conducted a careful, thorough analysis of the proposed

system to verify its effectiveness. In this section, we first
review the experimental setup and then offer the empirical
analysis through the discussion of the major findings.

7.1 Experimental Setup
Query Set: We collected a random sample of 912 fully
anonymized queries issued on a commercial search engine
according to their frequency.

Manual Annotation: All manual annotation tasks de-
scribed were performed by a group of eight professional search
engine quality evaluators experienced with assessing the qual-
ity of query suggestions and search results.

Annotation Guidelines: Professional annotators provided
4-level ratings (excellent, good, fair, bad) for the ranked
suggestions for these 912 unique queries. Annotators were
asked to base their judgement after looking at the results
page and comparing those for the query and the suggestion;
this is important to capture the utility of a suggestion.

Variations of the system: We designed a systematic
evaluation where we tested different versions of our system
against the baseline. We briefly review each version below:
B: As a baseline, the candidates are ranked according to

mutual information (2). Only the suggestions with a score
larger than 50 are kept, and the threshold value is set em-
pirically by optimizing the trade-off between the quality and
coverage.
10M: Score of a suggestion is directly computed by the

utility estimation Pr(q2 | q1, u = 1, c = 1). There is no
machine learning model and only the suggestions from the
query logs are considered. Co-occurrence of all query pairs
are considered within a session of 10 minutes, as described
in Section 4.
10M-ML: Scores are predicted by the GBDT model. Only

the suggestions from the query logs are considered
10M-ML-SY: Same as 10M-ML with the difference that syn-

thetic suggestions (section 6.2) and most frequent special-
izations (section 6.3) are also scored.
10MC, 10MC-ML, 10MC-ML-SY: Same as the above three

models except that only consecutive pairs in a session are
treated as co-occurrences -to avoid the intent drift in the
sessions.

We did not consider a baseline trained on the labeled data
alone as an interesting baseline to report on. The reasons
can be summarized as follows. With the exception of query
substitutions work of Jones et. al. [13], most notable query
suggestion research focused on sources other than editorial
labels for training machine learning systems. Editorial data
is expensive, and generalizing to the tail at web scale re-
quires a lot of labeled data. Search result ranking is proba-
bly a simpler problem than query suggestion ranking since,
the latter attempts to learn utility left over from the cur-
rent search. Yet, state of the art methods for learning to
rank search results utilize tens of thousands of labeled ex-
amples (see Yahoo! Learning to Rank Challenge [4]). Learn-
ing to suggest properly would probably require more. Jones
et. al. can do with a training set of 1000 query pairs be-
cause their task is bid term generation which is much simpler
than suggesting queries for various reasons. First, the task
is designed to retrieve query substitutions for the current
search (so ad coverage can be increased), rather than utility
for subsequent searches. Second, non-sensical substitutions
are filtered by matching to the advertisers’ bid terms. And
last but not least, even the surviving ones are not shown to
the user directly. Training on the session data holds other
advantages as well. User feedback on additional utility of
a suggestion given the current search is directly captured,
which is difficult in the editorial data. Our system, on the
other hand, does not rely on a large set of labeled data but
rather simulates target labels based on the likelihood of the
suggestions.

Offline Evaluation: The offline analysis relies on the edito-
rial judgments and there are two major criteria that we deem
important to measure. First is the ability of the system to
rank the good quality suggestions higher. The second mea-
sures the number of queries for which the system is not able
to bring any suggestions. These two criteria is analogous to
the precision-recall tradeoff in standard document retrieval
problems. We adopt DCG and Precision at various cut-off
points to measure the quality of the ranked suggestions.

DCG@k =
k∑

i=1

2l
i
q − 1

log(1 + i)

P@k =

∑k
i=1 r

i
q

k
(10)

where liq ∈ {0, 1, 2, 3} is the graded relevance (3 is the best)

of the suggestion ranked at position i for a given query q. riq
is the binary version where the good and excellent labels are
transformed into 1 and the rest is assigned 0. The overall
DCG and Precision are calculated by averaging over all the
queries in the test data.

We defined the coverage as the ratio of the number of
queries the system could bring suggestions for to the total
number of test queries. Coverage measures the likelihood of
a system to find suggestions for a given query. Therefore, it
complements the DCG and Precision metrics.

Online Evaluation: For the online analysis, we conducted
an A/B test where we tested and compared the proposed sys-
tem (10M-ML-SY implementation) against the baseline on live
traffic. Both systems are tested on randomly sampled user
populations without imposing any bias towards a particu-
lar group of users. The suggested queries appear as related
searches at the bottom of the result page. Users interactions
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Table 5: Coverage, DCG, and Precision improvement compared to the mutual information baseline.

depth = 1 depth=3 depth=5 depth=7 depth=9 depth=12
Coverage
10M -9% 2% 2% 4% 34% 294%
10MC -9% 0% 0% 2% 33% 282%
10M-ML -13% -3% -1% 2% 32% 289%
10MC-ML -17% -7% -6% -4% 25% 269%
10M-ML-SY 17% 28% 35% 40% 85% 381%
10MC-ML-SY 17% 28% 34% 40% 84% 365%
DCG on common coverage
10M 2% 5% 5% 6% 9% 4%
10MC 2% 9% 8% 8% 9% 7%
10M-ML 5% 8% 8% 8% 9% 10%
10MC-ML 5% 7% 8% 9% 10% 9%
10M-ML-SY 7% 9% 8% 9% 10% 10%
10MC-ML-SY 8% 8% 7% 10% 12% 11%
Precision on common coverage
10M 4% 10% 9% 10% 14% 11%
10MC 8% 13% 11% 12% 15% 11%
10M-ML 7% 10% 10% 11% 12% 12%
10MC-ML 6% 8% 10% 13% 13% 12%
10M-ML-SY 8% 11% 10% 11% 13% 14%
10MC-ML-SY 8% 11% 10% 13% 16% 16%

Table 6: Coverage and CTR improvements of the 10M-ML-SY system in the online test.

depth = 1 depth=3 depth=5 depth=7 depth=9 depth=12
Coverage 10% 31% 40% 40% 35% 91%
CTR 42% 41% 38% 37% 50% 49%

with the suggested queries are logged in the query logs for a
period of one week. To ensure production quality and suffi-
cient diversity of the suggestions, we further remove the low
utility queries that are near-duplicates of already suggested
queries. The duplicate elimination method is identical in
both baseline and test buckets; the details of the model is
explained in detail in [18]. We measured the CTR on the
suggestions that our system ranked and compared it against
the CTR on those ranked by a MI baseline. Here CTR at
position k is defined as number of clicks within the first k
suggestions divided by number of result pages with at least
k suggestions.

A/B tests are expensive in the sense that they require en-
gineering resources to build the necessary online platform
to do a full comparison. For this reason, instead of imple-
menting online tests for each variation of the model, for the
online test we picked 10M-ML-SY, one of the best performing
models in the offline comparisons, with respect to coverage
and the quality metrics based on human judgments.

7.2 Results
In Table 5, we show the relative performance of different

versions of the proposed system against the baseline with
respect to DCG, Precision and Coverage metrics at vari-
ous cut-off points (depths). The DCG and Precision val-
ues are calculated on the queries that both systems bring
suggestions at the specified depth; hence we refer to it as
common coverage in Table 5. Generally, the performance
gap increases with depth where the largest gaps occur at
depths 9 and 12. At depths 9 and 12, the best performer in
terms of DCG against the baseline is 10MC-ML-SY followed
by 10M-ML-SY and 10M-ML. The same is also true in terms of
Precision. This suggests that i) the machine learned models
outperform the systems that directly uses estimated target

scores Pr(q2 | q1, u = 1, c = 1) without any learning, ii)
the system is able to blend the additional candidates very
well that the overall quality of the suggestions are as good
as the organic counterpart. Furthermore, the performance
of the proposed approach (in both DCG and Precision) ei-
ther outperforms or is comparable to the strong MI (Mutual
Information) baseline at all depths.

The coverage remains relatively flat across different meth-
ods at small depths. This is not surprising since all methods
are effective in bringing at least a few suggestions for a given
query. However, the coverage difference becomes more evi-
dent at larger depths where the real benefit of the implicit
task boundary model and the machine learning step can be
assessed. At depths 9 and 12, the best coverages are those of
10M-ML-SY and 10MC-ML-SY. We are quite encouraged by this
result since it demonstrates that our approach can blend the
additional candidates into organic ones without hurting the
performance while maintaining a high coverage. The cover-
age of 10MC-ML is quite low compared to these two, since the
higher quality is suffered by a loss in coverage for 10MC-ML.
The coverage of the baseline, on the other hand, is signifi-
cantly lower than the rest at larger depths even though it
has comparable coverage to others at smaller depths.

In Figure 1 we demonstrate how the editorial judgments
are distributed for the baseline, and the full machine learn-
ing model 10M-ML-SY that is used in the online test. To be
able to show how much of the gain comes from the implicit
task boundary model, and how much of it comes from the
machine learning step, we present the grade distributions of
the implicit task boundary model 10M as well. We compared
the grade distribution at different cut-off points from top 1
to top 12. Also, the grades presented in the histograms are
computed over the each individual coverage of the methods,
hence they are different than those in 5, which compares the
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relevance over the common coverage. A few things to note in
Figure 1 are: (i) 10M and 10MC-ML-SY do perform better not
only with respect to the common coverage (as presented in
Table 5) but also over their entire coverage, which is signif-
icantly bigger than the common coverage with the baseline.
(ii) At every rank cut-off, the ratio of good and excellent
suggestions are higher and the ratio of fair and bad sug-
gestions are lower for both 10M and 10MC-ML-SY, hence the
grade distributions are more skewed towards better grades.
(iii) Although the implicit task boundary model 10M is bet-
ter than the baseline in terms of total number of good or
excellent suggestions, the machine learning step has a more
important contribution in bringing a lot more good quality
suggestions without increasing the ratio of bad suggestions.

The results of the online analysis are similarly encourag-
ing. We compared our system against the MI baseline in
terms of both CTR and coverage. We note that the defini-
tion of coverage and CTR in the online evaluation is slightly
different that those used in the offline analysis. In the online
version, the coverage is weighted by query frequency. On the
other hand, the click ratios are calculated separately for each
system on the respective queries where there is a suggestion.
The results are presented in table 6. They show that our sys-
tem not only increases the chance of finding suggestions for
a given query, it also ensures a significantly higher quality of
these suggestions. Additionally, we report a 0.9% decrease
in the next-page clicks using our system. Users’ needs for
a suggestion are higher at the bottom of a page since they
view the top 10 results before they see the related searches
at the bottom. The fact that the CTR increases and the
next-page clicks decreases indicate to some extent that the
suggestions were useful.

To understand what the model does, it is instructing to
look at which features were the most relevant in the GBDT
model. Overall result set features are much more important
than lexical features, with ABOUTNESS and some LTR based
scores being the most relevant ones. This is not surprising
since the result set features are more sophisticated features.
Among the lexical features LEV and more generally features
that depend on both q1 and q2 were more heavily used by
the GBDT model.

Finally Table 7 lists the results of the two models for a
few sample queries.

8. CONCLUSIONS
In this paper we present an end-to-end query suggestion

method that implements novel ideas such as incorporating
usefulness of reformulations, an implicit session boundary
model, and a machine learning model to further improve
the suggestion relevance and be able to add more sources
of suggestions beyond the co-occurrences in query logs. The
idea of incorporating usefulness into the query co-occurrence
models is not specific to our particular selection of target,
and it can be used directly with PMI, LLR, and other sim-
ilar measures as well. Even without the machine learning
step, the reformulation relevance model shows significant im-
provements over MI, significant gains in coverage and mod-
est gains in relevance. The feature generation and machine
learning step brings some further relevance improvement,
and allows us to add other candidate sources, which signifi-
cantly increases the coverage. This is a particular advantage
of our approach against the related work in the literature.
We trained the machine learning model with targets gener-

Table 7: sample queries and their suggestions for 10M
and the baseline

query odd couple
B tony randall
10-M jack klugman, tony randall, odd couple movie,

tony curtis, youtube, john fiedler, jack lemmon,
imdb, grumpy old men, odd couple theme, taxi

query al di meola
B al di meola discography, al di meola tabs,

john mclaughlin, paco de lucia, twitter
10-M john mclaughlin, youtube, stanley clarke,

paco de lucia, lee ritenour, return to forever,
jeff beck, amazon, al di meola youtube

query skateboard wheels
B cheap skateboard wheels, spitfire skateboard wheels
10-M longboard wheels, ccs, skateboard, skateboards,

amazon, cheap skateboard wheels, skateboard trucks,
skateboard decks, soft skateboard wheels, big 5,
purple skateboard wheels, sports authority

query sigir
B -
10-M sigar, sigir 2012, special inspector general for iraq,

sigir current news

query Balvenie
B balvenie scotch
10-M glenlivet, glenfiddich, balvenie doublewood,

glenmorangie, talisker, macallan, balvenie scotch,
lagavulin, scotch

query wool sweater
B -
10-M ll bean, women wool sweater, women’s wool sweater,

ping pong table

ated from session logs via the utility and implicit task bound-
ary models, which removes the dependency on large labeled
data. The offline as well as the online evaluation demon-
strate the effectiveness of the proposed framework against
MI. We observed significant improvements in coverage and
quality metrics. The click through rates on the online tests
are very promising and we plan to extend this work with
personalization and further diversification of suggestions.
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