
Foundations and TrendsR© in
Information Retrieval
Vol. 3, No. 3 (2009) 225–331
c© 2009 T.-Y. Liu
DOI: 10.1561/1500000016

Learning to Rank for Information Retrieval

By Tie-Yan Liu

Contents

1 Introduction 226

1.1 Ranking in IR 228
1.2 Learning to Rank 235
1.3 About this Tutorial 244

2 The Pointwise Approach 246

2.1 Regression based Algorithms 247
2.2 Classification based Algorithms 248
2.3 Ordinal Regression based Algorithms 250
2.4 Discussions 254

3 The Pairwise Approach 257

3.1 Example Algorithms 258
3.2 Discussions 263

4 The Listwise Approach 267

4.1 Direct Optimization of IR Evaluation Measures 267
4.2 Minimization of Listwise Ranking Losses 273
4.3 Discussions 276

5 Analysis of the Approaches 278

5.1 The Pointwise Approach 279
5.2 The Pairwise Approach 281
5.3 The Listwise Approach 283
5.4 Discussions 286

6 Benchmarking Learning-to-Rank Algorithms 287

6.1 The LETOR Collection 287
6.2 Experimental Results on LETOR 294

7 Statistical Ranking Theory 299

7.1 Conventional Generalization Analyses on Ranking 300
7.2 A Query-level Ranking Framework 305
7.3 Query-level Generalization Analysis 309
7.4 Discussions 313

8 Summary and Outlook 315

Acknowledgments 323

References 324

Foundations and TrendsR© in
Information Retrieval
Vol. 3, No. 3 (2009) 225–331
c© 2009 T.-Y. Liu
DOI: 10.1561/1500000016

Learning to Rank for Information Retrieval

Tie-Yan Liu

Microsoft Research Asia, Sigma Center, No. 49, Zhichun Road, Haidian
District, Beijing, 100190, P. R. China, Tie-Yan.Liu@microsoft.com

Abstract

Learning to rank for Information Retrieval (IR) is a task to automat-
ically construct a ranking model using training data, such that the
model can sort new objects according to their degrees of relevance,
preference, or importance. Many IR problems are by nature rank-
ing problems, and many IR technologies can be potentially enhanced
by using learning-to-rank techniques. The objective of this tutorial
is to give an introduction to this research direction. Specifically, the
existing learning-to-rank algorithms are reviewed and categorized into
three approaches: the pointwise, pairwise, and listwise approaches. The
advantages and disadvantages with each approach are analyzed, and
the relationships between the loss functions used in these approaches
and IR evaluation measures are discussed. Then the empirical evalua-
tions on typical learning-to-rank methods are shown, with the LETOR
collection as a benchmark dataset, which seems to suggest that the list-
wise approach be the most effective one among all the approaches. After
that, a statistical ranking theory is introduced, which can describe dif-
ferent learning-to-rank algorithms, and be used to analyze their query-
level generalization abilities. At the end of the tutorial, we provide a
summary and discuss potential future work on learning to rank.

1
Introduction

With the fast development of the Web, every one of us is experi-
encing a flood of information. It was estimated that there are about
25 billion pages on the Web as of October 2008,1 which makes it
generally impossible for common users to locate desired information
by browsing the Web. As a consequence, efficient and effective Infor-
mation Retrieval (IR) has become more important than ever, and
search engines (or IR systems) have become an essential tool for many
people.

Ranking is a central problem in IR. Many IR problems are by
nature ranking problems, such as document retrieval, collaborative
filtering [58], key term extraction [30], definition finding [130], impor-
tant email routing [23], sentiment analysis [94], product rating [36],
and anti Web spam [56]. In this tutorial, we will mainly take document
retrieval as an example. Note that document retrieval is not a narrow
task. Web pages, emails, academic papers, books, and news articles are
just a few of the many examples of documents. There are also many
different ranking scenarios for document retrieval of our interest.

1 http://www.worldwidewebsize.com/

226

227

Scenario 1 : Rank the documents purely according to their relevance
with regards to the query.

Scenario 2 : Consider the relationships of similarity [117], website
structure [35], and diversity [139] between documents in the ranking
process. This is also referred to as relational ranking [103].

Scenario 3 : Aggregate several candidate ranked lists to get a better
ranked list. This scenario is also referred to as meta search [7]. The
candidate ranked lists may come from different index servers or different
vertical search engines, and the target ranked list is the final result
presented to users.

Scenario 4 : Find whether and to what degree a property of a web-
page influences the ranking result. This is referred to as “reverse engi-
neering” in search engine optimization (SEO).2

To tackle the problem of document retrieval, many heuristic ranking
models have been proposed and used in IR literature. Recently, given
the amount of potential training data available, it has become possi-
ble to leverage Machine Learning (ML) technologies to build effective
ranking models. Specifically, we call those methods that learn how to
combine predefined features for ranking by means of discriminative
learning “learning-to-rank” methods.

In recent years, learning to rank has become a very hot research
direction in IR, and a large number of learning-to-rank algorithms have
been proposed, such as [9, 13, 14, 16, 17, 26, 29, 33, 34, 47, 49, 59, 63,
73, 78, 90, 97, 99, 102, 114, 119, 122, 129, 134, 136]. We foresee that
learning to rank will have an even bigger impact on IR in the future.

When a research area comes to this stage, several questions
naturally arise.

• To what respect are these learning-to-rank algorithms similar
and in which aspects do they differ? What are the strengths
and weaknesses of each algorithm?

• Empirically, which of those many learning-to-rank algorithms
perform the best? What kind of datasets can be used to make
fair comparison among different learning-to-rank algorithms?

2 http://www.search-marketing.info/newsletter/reverse-engineering.htm

228 Introduction

• Theoretically, is ranking a new ML problem, or can it be sim-
ply reduced to existing ML problems? What are the unique
theoretical issues for ranking that should be investigated?

• Are there many remaining issues regarding learning to rank
to study in the future? What are they?

The above questions have been brought to the attention of the IR
and ML communities in a variety of contexts, especially during recent
years. The aim of this tutorial is to review the recent work that attempts
to answer these questions. Needless to say, the comprehensive under-
standing of the task of ranking in IR is the key to finding the right
answers. Therefore, we will first give a brief introduction of ranking in
IR, and then formalize the problem of learning to rank so as to set the
stage for the upcoming detailed reviews.

1.1 Ranking in IR

In this subsection, we briefly review representative ranking models in
IR literature, and introduce how these models are evaluated.

1.1.1 Conventional Ranking Models for IR

In IR literature, many ranking models have been proposed [8]; they
can be roughly categorized as query-dependent models and query-
independent models.

Query-dependent models

The early models retrieve documents based on the occurrences of the
query terms in the documents. Examples include the Boolean model [8].
Basically these models can only predict whether a document is relevant
to the query or not, but cannot predict the degree of relevance.

To further model the relevance degree, the Vector Space model
(VSM) was proposed [8]. Both documents and queries are represented
as vectors in a Euclidean space, in which the inner product of two vec-
tors can be used to measure their similarities. To get an effective vector
representation of queries and documents, TF–IDF weighting has been

1.1 Ranking in IR 229

widely used.3 The TF of term t in a vector is defined as the normalized
number of its occurrences in the document, and the IDF of it is defined
as follows:

IDF(t) = log
N

n(t)
, (1.1)

where N is the total number of documents in the collection, and n(t)
is the number of documents containing term t.

While VSM implies the assumption on the independence between
terms, Latent Semantic Indexing (LSI) [37] tries to avoid this assump-
tion. In particular, Singular Value Decomposition (SVD) is used to lin-
early transform the feature space and thus a “latent semantic space”
is generated. Similarity in this new space is then used to define the
relevance between queries and documents.

As compared with the above, models based on the probabilistic
ranking principle [83] garnered more attention and achieved more suc-
cess in past decades. The famous ranking models like BM25 [111]4 and
language model for IR can both be categorized as probabilistic ranking
models.

The basic idea of BM25 is to rank documents by the log-odds of
their relevance. Actually BM25 is not a single model, but it defines a
whole family of ranking models, with slightly different components and
parameters. One of the popular instantiations of the model is as follows.

Given query q, containing terms t1, . . . , tM , the BM25 score of
document d is computed as below:

BM25(d,q) =
M∑
i=1

IDF(ti) · TF(ti,d) · (k1 + 1)

TF(ti,d) + k1 ·
(
1 − b + b · LEN(d)

avdl

) , (1.2)

where TF(t,d) is the term frequency of t in document d; LEN(d) is the
length (number of words) of document d; avdl is the average document
length in the text collection from which documents are drawn; k1 and

3 Note that there are many different definitions of TF and IDF in IR literature. Some are
purely based on the frequency and the others include smoothing or normalization [116].
Here we just give some simple examples to illustrate the main idea.

4 The name of the actual model is BM25. However, it is usually referred to as “OKapi
BM25”, since the OKapi system was the first system to implement this model.

230 Introduction

b are free parameters; IDF(t) is the IDF weight of term t, computed by
using Equation (1.1), for example.

Language model for IR [96] is an application of the statistical lan-
guage model on IR. A statistical language model assigns a probabil-
ity to a sequence of terms. When used in IR, a language model is
associated with a document. With query q as input, documents are
ranked based on the query likelihood, or the probability that the doc-
ument’s language model would generate the terms in the query (i.e.,
P (q |d)). By further assuming the independence among terms, one has
P (q |d) =

∏M
i=1 P (ti |d), if query q contains terms t1, . . . , tM .

To learn the document’s language model, a maximum likelihood
method is used. As in many maximum likelihood methods, the issue
of smoothing the estimate is critical. Usually a background language
model estimated using the entire collection is used for this purpose.
Then, the document’s language model can be constructed as follows:

p(ti |d) = (1 − λ)
TF(ti,d)
LEN(d)

+ λp(ti |C), (1.3)

where p(ti |C) is the background language model for term ti, and λ ∈
[0,1] is a smoothing factor.

There are many variants of language model for IR, some of them
even go beyond the query likelihood retrieval model (e.g., the models
based on K–L divergence [140]). We will not introduce more about
them, and readers are encouraged to read the tutorial authored by
Zhai [138].

In addition to the above examples, many other models have also
been proposed to compute the relevance between a query and a docu-
ment. Some of them [118] take the proximity of the query terms into
consideration, and some others consider the relationship between doc-
uments in terms of content similarity [117], hyperlink structure [113],
website structure [101], and topic diversity [139].

Query-independent models

In IR literature, there are also many models that rank documents based
on their own importance. We will take PageRank [92] as an example
for illustration. This model is particularly applicable to Web search
because it makes use of the hyperlink structure of the Web for ranking.

1.1 Ranking in IR 231

PageRank uses the probability that a surfer randomly clicking on
links will arrive at a particular webpage to rank the web pages. In the
general case, the PageRank value for any page du can be expressed as:

PR(du) =
∑

dv∈Bu

PR(dv)
U(dv)

. (1.4)

That is, the PageRank value for page du is dependent on the
PageRank values for each page dv out of the set Bu (containing all
pages linking to page du), divided by U(dv), the number of outlinks
from page dv.

To get a meaningful solution to Equation (1.4), a smoothing term
is introduced. When the random surfer walks on the link graph, she/he
does not necessarily always follow the existing hyperlinks. There is a
small probability that she/he will jump to any other page uniformly.
This small probability can be represented by (1 − α), where α is called
the damping factor. Accordingly, PageRank is refined as follows:

PR(du) = α
∑

dv∈Bu

PR(dv)
U(dv)

+
(1 − α)

N
, (1.5)

where N is the total number of pages on the Web.
There is much work discussing the theoretical properties, variations,

and efficient implementations of PageRank. Furthermore, there are
also many other link analysis algorithms, such as Hyperlink Induced
Topic Search (HITS) [72] and TrustRank [57]. Some of these algo-
rithms even leverage the content or topic information in the process
of link analysis [91].

1.1.2 Query-level Position-based Evaluations in IR

Given the large number of ranking models as introduced in the pre-
vious subsection, a standard evaluation mechanism is needed to select
the most effective model. For this purpose, one usually proceeds as
follows:

• Collect a large number of (randomly sampled) queries to form
a test set.

232 Introduction

• For each query q,

— Collect documents {dj}m
j=1 associated with the query.

— Get the relevance judgment for each document by
human assessment.

— Use a given ranking model to rank the documents.

— Measure the difference between the ranking results
and the relevance judgment using an evaluation
measure.

• Use the average measure on all the queries in the test set to
evaluate the performance of the ranking model.

As for collecting the documents associated with a query, a num-
ber of strategies can be used. For example, one can simply collect all
the documents containing the query word. One can also choose to use
some predefined rankers to get documents that are more likely to be
relevant. A popular strategy is the pooling method used in TREC.5 In
this method a pool of possibly relevant documents is created by taking
a sample of documents selected by various participating systems. In
particular, the top 100 documents retrieved in each submitted run for
a given query are selected and merged into the pool for human assess-
ment. On average, an assessor judges the relevance of approximately
1500 documents per query.

As for the relevance judgment, three strategies were used in the
literature.

(1) Specifying whether a document is relevant or not to the query
(i.e., binary judgment 1 or 0), or further specifying the degree
of relevance (i.e., multiple ordered categories, e.g., Perfect,
Excellent, Good, Fair, or Bad). Suppose for document dj

associated with query q, we get its relevance judgment as lj .
Then for two documents du and dv, if lu � lv, we say that
document du is more relevant than document dv, with regards
to query q, according to the relevance judgment.

5 http://trec.nist.gov/

1.1 Ranking in IR 233

(2) Specifying whether a document is more relevant than another
with regards to a query. For example, if document du is
judged to be more relevant than document dv with regards to
query q, we give the judgment lu,v = 1; otherwise, lu,v = −1.
That is, this kind of judgment captures the relative prefer-
ence between documents.6

(3) Specifying the partial order or even total order of the docu-
ments with respect to a query. For the group of documents
{dj}m

j=1 associated with query q, this kind of judgment is
usually represented as a certain permutation of these docu-
ments, denoted as πl, or a set of such permutations.

Given the vital role that relevance judgments play in a test collec-
tion, it is important to assess the quality of the judgments. In previous
practices like TREC, both the completeness and the consistency of rel-
evance judgments are of interest. Completeness measures the degree to
which all the relevant documents for a topic have been found; con-
sistency measures the degree to which the assessor has marked all
the “truly” relevant documents relevant and the “truly” irrelevant
documents irrelevant.

Since manual judgment is time consuming, it is almost impossible
to judge all the documents with regards to a query. Consequently, there
are always unjudged documents returned by the ranking model. As a
common practice, one regards the unjudged documents as irrelevant in
the evaluation process.7

With the relevance judgment, several evaluation measures have been
proposed and used in IR literature. It is clear that understanding these
measures will be very important for learning to rank, since to some
extent they define the “true” objective function of ranking. Below we
list some popularly used measures.

Mean reciprocal rank (MRR): For query q, the rank position of its first
relevant document is denoted as r(q). Then 1

r(q) is defined as MRR for

6 This kind of judgment can also be mined from click-through logs of search engines
[68, 69, 105].

7 In recent years, several new evaluation mechanisms [18] that consider the relevance prob-
ability of an unjudged document have also been proposed.

234 Introduction

query q. It is clear that documents ranked below r(q) are not considered
in MRR.

Mean average precision (MAP): To define MAP [8], one needs to
define Precision at position k (P@k) first,

P@k(q) =
#{relevant documents in the top k positions}

k
. (1.6)

Then, the Average Precision (AP) is defined below:

AP(q) =
∑m

k=1 P@k(q) · lk
#{relevant documents} , (1.7)

where m is the total number of documents associated with query q, and
lk is the binary judgment on the relevance of the document at the k-th
position. The mean value of AP over all the test queries is named MAP.

Discounted cumulative gain (DCG): While the aforementioned mea-
sures are mainly designed for binary judgments, DCG [65, 66] can lever-
age the relevance judgment in terms of multiple ordered categories, and
has an explicit position discount factor in its definition. More formally,
suppose the ranked list for query q is π, then DCG at position k is
defined as follows:

DCG@k(q) =
k∑

r=1

G(π−1(r))η(r), (1.8)

where π−1(r) denotes the document ranked at position r of the list
π, G(·) is the rating of a document (one usually sets G(π−1(r)) =
(2lπ−1(r) − 1)), and η(r) is a position discount factor (one usually sets
η(r) = 1/ log2(r + 1)).

By normalizing DCG@k with the maximum value of it (denoted
as Zk), we will get another measure named Normalized DCG (NDCG).
That is:

NDCG@k(q) =
1
Zk

k∑
r=1

G(π−1(r))η(r). (1.9)

It is clear that NDCG takes values from 0 to 1.

Rank correlation (RC): The correlation between the ranked list
given by the model (denoted as π) and the relevance judgment

1.2 Learning to Rank 235

(denoted as πl) can be used to define a measure. For example, when
the weighted Kendall’s τ is used, the RC measures the weighted pair-
wise inconsistency between two lists. Its definition is given below:

τK(q) =
∑

u<v wu,v(1 + sgn((π(u) − π(v))(πl(u) − πl(v))))
2
∑

u<v wu,v
, (1.10)

where wu,v is the weight, and π(u) means the rank position of document
du in list π.

To summarize, there are some common properties in these evalua-
tion measures.

(1) All these evaluation measures are calculated at the query
level. That is, first the measure is computed for each query,
and then averaged over all queries in the test set. No matter
how poorly the documents associated with a particular query
are ranked, it will not dominate the evaluation process since
each query contributes similarly to the average measure.

(2) All these measures are position based. That is, rank posi-
tion is explicitly used. Considering that with small changes
in the scores given by a ranking model the rank positions
will not change until one document’s score passes another,
the position-based measures are usually non-continuous and
non-differentiable with regards to the scores. This makes the
optimization of these measures quite difficult. We will con-
duct more discussions on this in Section 4.1.

1.2 Learning to Rank

Many ranking models have been introduced in the previous subsection,
most of which contain parameters. For example, there are parameters
k1 and b in BM25 (see Equation (1.2)), parameter λ in language model
for IR (see Equation (1.3)), and parameter α in PageRank (see Equa-
tion (1.5)). In order to get a reasonably good ranking performance (in
terms of IR evaluation measures), one needs to tune these parameters
using a validation set. Nevertheless, the parameter tuning is far
from trivial, especially considering that IR evaluation measures are
non-continuous and non-differentiable with respect to the parameters.

236 Introduction

In addition, a model perfectly tuned on the validation set sometimes
performs poorly on unseen test queries. This is usually called over-
fitting. Another issue is about the combination of these ranking models.
Given that many models have been proposed in the literature, it is
natural to investigate how to combine these models and create an even
more effective new model. This is, however, not straightforward either.

While IR researchers were facing these problems, machine learn-
ing has been demonstrating its effectiveness in automatically tuning
parameters, combining multiple evidences, and avoiding over-fitting.
Therefore, it seems quite promising to adopt ML technologies to solve
the aforementioned problems.

1.2.1 ML Framework

In much ML research (especially discriminative learning), attention has
been paid to the following key components.8

(1) The input space, which contains the objects under investi-
gation: Usually objects are represented by feature vectors,
extracted according to different applications.

(2) The output space, which contains the learning target with
respect to the input objects: There are two related but dif-
ferent definitions of the output space in ML.9 The first is the
output space of the task, which is highly dependent on the
application. For example, in the regression problem the out-
put space is the space of real numbers R; in classification, it is
the set of discrete categories {0,1, . . . ,K − 1}. The second is
the output space to facilitate the learning process. This may
differ from the output space of the task. For example, one
can use regression algorithms to solve the problem of classifi-
cation. In this case, the output space that facilitates learning
is the space of real numbers but not discrete categories.

(3) The hypothesis space, which defines the class of functions
mapping the input space to the output space: The functions

8 For a more comprehensive introduction to the ML literature, please refer to [89].
9 In this tutorial, when we mention the output space, we mainly refer to the second type.

1.2 Learning to Rank 237

operate on the feature vectors of the input objects, and make
predictions according to the format of the output space.

(4) In order to learn the optimal hypothesis, a training set is
usually used, which contains a number of independent and
identically distributed (i.i.d.) objects and their ground truth
labels, sampled from the product of the input and output
spaces. The loss function measures to what degree the pre-
diction generated by the hypothesis is in accordance with the
ground truth label. For example, widely used loss functions
for classification include the exponential loss, the hinge loss,
and the logistic loss. It is clear that the loss function plays
a central role in ML, since it encodes the understanding of
the target application (i.e., what prediction is correct and
what is not). With the loss function, an empirical risk can
be defined on the training set, and the optimal hypothesis is
usually (but not always) learned by means of empirical risk
minimization.

1.2.2 Learning-to-Rank Framework

In recent years, more and more ML technologies have been used to
train the ranking model, and a new research area named “learning
to rank” has gradually emerged. Especially in the past several years,
learning to rank has become one of the most active research areas in IR.

In general, we can call all those methods that use ML technologies
to solve the problem of ranking “learning-to-rank” methods,10 such
as the work on relevance feedback11 [39, 112] and automatically tun-
ing the parameters of existing IR models [60, 120]. However, most of
the state-of-the-art learning-to-rank algorithms learn the optimal way
of combining features extracted from query–document pairs through
discriminative training. Therefore, in this tutorial we define learning
to rank in a more specific way to better summarize these algorithms.

10 In ML literature, there is a topic named label ranking. It is to predict the ranking of mul-
tiple class labels for an individual document, but not to predict the ranking of documents.
In this regard, it is largely different from the task of ranking for IR.

11 We will make further discussions on the relationship between relevance feedback and
learning to rank in Section 2.

238 Introduction

We call those ranking methods that have the following two properties
learning-to-rank methods.

Feature based : All the documents under investigation are represented
by feature vectors,12 reflecting the relevance of the documents to the
query. That is, for a given query q, its associated document d can be
represented by a vector x = Φ(d,q), where Φ is a feature extractor.
Typical features used in learning to rank include the frequencies of the
query terms in the document, the BM25 and PageRank scores, and the
relationship between this document and other documents. If one wants
to know more about widely used features, please refer to Tables 6.2
and 6.3 in Section 6.

Even if a feature is the output of an existing retrieval model, in
the context of learning to rank, one assumes that the parameter in the
model is fixed, and only the optimal way of combining these features is
learned. In this sense, the previous work on automatically tuning the
parameters of existing models [60, 120] is not categorized as “learning-
to-rank” methods.

The capability of combining a large number of features is a very
important advantage of learning to rank. It is easy to incorporate any
new progress on the retrieval model by including the output of the
model as one dimension of the features. Such a capability is highly
demanding for real search engines, since it is almost impossible to use
only a few factors to satisfy complex information needs of Web users.

Discriminative training : The learning process can be well described
by the four components of discriminative learning as mentioned in the
previous subsection. That is, a learning-to-rank method has its specific
input space, output space, hypothesis space, and loss function.

In ML literature, discriminative methods have been widely used to
combine different kinds of features, without the necessity of defining a
probabilistic framework to represent the objects and the correctness of
prediction. In this sense, previous works that train generative ranking

12 Note that, hereafter in this tutorial, when we refer to a document, we will not use d any
longer. Instead, we will directly use its feature representation x. Furthermore, since our
discussions will focus more on the learning process, we will always assume the features
are pre-specified, and will not purposely discuss how to extract them.

1.2 Learning to Rank 239

models are not categorized as “learning-to-rank” methods in this tuto-
rial. If one has interest in such work, please refer to [74, 85, 141], etc.

Discriminative training is an automatic learning process based on
the training data. This is also highly demanding for real search engines,
because everyday these search engines will receive a lot of user feedback
and usage logs indicating poor ranking for some queries or documents.
It is very important to automatically learn from feedback and con-
stantly improve the ranking mechanism.

Due to the aforementioned two characteristics, learning to rank has
been widely used in commercial search engines,13 and has also attracted
great attention from the academic research community.

Figure 1.1 shows the typical “learning-to-rank” flow. From the figure
we can see that since learning to rank is a kind of supervised learning,
a training set is needed. The creation of a training set is very similar to

Fig. 1.1 Learning-to-rank framework.

13 See http://blog.searchenginewatch.com/050622-082709,
http://blogs.msdn.com/msnsearch/archive/2005/06/21/431288.aspx,
and http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html.

240 Introduction

the creation of the test set for evaluation. For example, a typical train-
ing set consists of n training queries qi(i = 1, . . . ,n), their associated
documents represented by feature vectors x(i) = {x

(i)
j }m(i)

j=1 (where m(i)

is the number of documents associated with query qi), and the corre-
sponding relevance judgments.14 Then a specific learning algorithm is
employed to learn the ranking model (i.e., the way of combining the
features), such that the output of the ranking model can predict the
ground truth label in the training set15 as accurately as possible, in
terms of a loss function. In the test phase, when a new query comes in,
the model learned in the training phase is applied to sort the documents
according to their relevance to the query, and return the corresponding
ranked list to the user as the response to her/his query.

1.2.3 Approaches to Learning to Rank

Many learning-to-rank algorithms can fit into the above framework.
In order to better understand them, we perform a categorization on
these algorithms. In particular, we group the algorithms, according to
the four pillars of ML, into three approaches: the pointwise approach,
the pairwise approach, and the listwise approach. Note that different
approaches model the process of learning to rank in different ways. That
is, they define different input and output spaces, use different hypothe-
ses, and employ different loss functions. Note that the output space is
used to facilitate the learning process, which can be different from the
relevance judgments on the documents. That is, even if provided with
the same format of judgments, one can derive different ground truth
labels from it, and use them for different approaches.

The pointwise approach

The input space of the pointwise approach contains the feature vector
of each single document.

14 Please distinguish between the judgment for evaluation and the judgment for constructing
the training set, although the processes of obtaining them may be very similar.

15 Hereafter, when we mention the ground truth labels in the remainder of the tutorial, we
will mainly refer to the ground truth labels in the training set, although we assume every
document has its intrinsic label no matter whether it is judged or not.

1.2 Learning to Rank 241

The output space contains the relevance degree of each single doc-
ument. The ground truth label in the output space is usually defined
in the following way. If the judgment is directly given as relevance
degree lj , the ground truth label for document xj is defined as yj = lj .
If the judgment is given as total order πl, one can get the ground truth
label by using a mapping function.16 However, if the judgment is given
as pairwise preference lu,v, it is not straightforward to make use of it
to generate the ground truth label.

The hypothesis space contains functions that take the feature vector
of a document as the input and predict the relevance degree of the
document. We usually call such a function f the scoring function. Note
that, based on the scoring function, one can sort all the documents and
produce the final ranked list.

The loss function examines the accurate prediction of the ground
truth label for each single document. In different pointwise ranking
algorithms, ranking is modeled as regression, classification, and ordi-
nal regression (see Section 2). Therefore the corresponding regression
loss, classification loss, and ordinal regression loss are used as the loss
function. Note that the pointwise approach does not consider the inter-
dependency among documents, and thus the position of a document in
the final ranked list is invisible to its loss function. Furthermore, the
approach does not make use of the fact that some documents are actu-
ally associated with the same query. Considering that most IR evalua-
tion measures are query-level and position-based, intuitively speaking,
the pointwise approach has its limitations.

Example algorithms belonging to the pointwise approach include
[24, 25, 26, 31, 33, 34, 49, 53, 73, 78, 90, 114]. We will introduce some
of them in Section 2.

The pairwise approach

The input space of the pairwise approach contains a pair of documents,
both represented as feature vectors.

The output space contains the pairwise preference (which takes val-
ues from {1,−1}) between each pair of documents. The ground truth

16 For example, the position of the document in πl can be used to define the relevance
degree.

242 Introduction

label in the output space is usually defined in the following way. If the
judgment is given as relevance degree lj , then the order for document
pair (xu,xv) can be defined as yu,v = 2 · I{lu�lv} − 1. Here I{A} is an
indicator function, which is defined to be 1 if predicate A holds and 0
otherwise. If the judgment is given directly as pairwise preference lu,v,
then it is straightforward to set yu,v = lu,v. If the judgment is given as
total order πl, one can define yu,v = 2 · I{πl(u)<πl(v)} − 1.

The hypothesis space contains bi-variate functions h that take a
pair of documents as the input and output the relative order between
them. Some pairwise ranking algorithms directly define their hypothe-
ses as such [29], however, in more algorithms, the hypothesis is
still defined with a scoring function f for simplicity, i.e., h(xu,xv) =
2 · I{f(xu)>f(xv)} − 1.

The loss function measures the inconsistency between h(xu,xv) and
the ground truth label yu,v. For example, in some algorithms, ranking
is modeled as a pairwise classification, and the corresponding classifi-
cation loss on a pair of documents is used as the loss function. Note
that the loss function used in the pairwise approach only considers
the relative order between two documents. When one looks at only a
pair of documents, however, the position of the documents in the final
ranked list can hardly be derived. Furthermore, the approach ignores
the fact that some pairs are generated from the documents associated
with the same query. Considering that most IR evaluation measures
are query-level and position-based, intuitively speaking, there is still a
gap between this approach and ranking for IR.

Example algorithms belonging to the pairwise approach include
[9, 14, 16, 29, 47, 63, 97, 122]. We will introduce some of them in
Section 3.

The listwise approach

The input space of the listwise approach contains the entire group of
documents associated with query q, e.g., x = {xj}m

j=1.
There are two types of output spaces used in the listwise approach.

For some listwise ranking algorithms, the output space contains the rele-
vance degrees of all the documents associated with a query. In this case,
the ground truth label y = {yj}m

j=1 can be derived from the judgment

1.2 Learning to Rank 243

in terms of the relevance degree or total order, in a similar manner
to that of the pointwise approach. For some other listwise ranking
algorithms, the output space contains the ranked list (or permutation)
of the documents. In this case, the ground truth label, denoted as πy,
can be generated in the following way. When the judgment is given
as total order πl, we can define πy = πl. Otherwise, we can derive πy

by using the concept of the equivalent permutation set (see Section 4).
When πy is given as the ground truth label, the output space that
facilitates the learning process is exactly the output space of the rank-
ing task. Therefore, the theoretical analysis on the listwise approach
has a more direct value where understanding the real ranking problem
than the other approaches where there are mismatches between the
output space that facilitates learning and the real output space of
the task.

The hypothesis space contains multivariate functions h that oper-
ate on a group of documents, and predict their relevance degrees or
their permutation. For practical reasons, the hypothesis h is also usu-
ally implemented with scoring function f . When the relevance degree
comprises the output space, h(x) = f(x). When the ranked list (per-
mutation) comprises the output space, h is defined as a compound
function h(x) = sort ◦ f(x). That is, first scoring function f is used to
give a score to each document, and then these documents are sorted in
the descending order of the scores to produce the desired ranked list.

There are also two types of loss functions, corresponding to the two
types of output spaces. When the ground truth label is given as y, the
loss function is usually defined on the basis of the approximation or
bound of widely used IR evaluation measures. When the ground truth
label is given as πy, the loss function measures the difference between
the ranked list given by the hypothesis and the ground truth list. As
compared to the pointwise and pairwise approaches, the advantage of
the listwise approach lies in that its loss function can naturally con-
sider the positions of documents in the ranked list of all the documents
associated with the same query.

Example algorithms that belong to the listwise approach include
[13, 17, 99, 102, 119, 129, 134, 136]. We will introduce some of them in
Section 4.

244 Introduction

It is noted that different loss functions are used in different
approaches, while the same IR evaluation measures are used for testing
their performances. A natural question that arises concerns the rela-
tionship between these loss functions and IR evaluation measures. The
investigation on this issue can help us explain the empirical results of
learning-to-rank algorithms. We will introduce some such investigations
in Section 5. In addition, in Section 6, we will introduce a benchmark
dataset for the research on learning to rank, named LETOR, and report
some empirical results of representative learning-to-rank algorithms on
the dataset.

Furthermore, one may have noticed that the scoring function, which
is widely used in defining the hypotheses of different approaches, is a
kind of “pointwise” function. However, it is not to say that all the
approaches are in nature pointwise approaches. The categorization of
the aforementioned three approaches is based on the four pillars of ML.
That is, different approaches regard the same training data as in dif-
ferent input and output spaces, and define different loss functions and
hypotheses accordingly. From the ML point of view, they have differ-
ent assumptions on the i.i.d. distribution of the data and therefore the
theoretical properties (e.g., generalization ability) of their correspond-
ing algorithms will be largely different. We will further discuss this in
Section 7, with the introduction of a new theory, which we call the
statistical ranking theory.

1.3 About this Tutorial

As for the writing of the tutorial, we do not aim to be fully rigorous.
Instead, we try to provide insights into the basic ideas. However, it is
still unavoidable that we will use mathematics for better illustration of
the problem, especially when we jump into the theoretical discussions
on learning to rank. We will have to assume familiarity with basic con-
cepts of probability theory and statistical learning in the corresponding
discussions.

Furthermore, we will use the notation rules as listed in Table 1.1
throughout the tutorial. Here we would like to add one more note. Since
in practice the hypothesis h is usually defined with scoring function f ,

1.3 About this Tutorial 245

Table 1.1 Notation rules.

Meaning Notation
Query q, or qi

A quantity z for query qi z(i)

Number of training queries n

Number of documents associated with query q m

Number of document pairs associated with query q m̃

Feature vector of a document associated with query q x

Feature vectors of documents associated with query q x = {xj}m
j=1

Term frequency of query q in document d TF(q,d)
Inverse document frequency of query q IDF(q)
Length of document d LEN(d)
Hypothesis h(·)
Scoring function f(·)
Loss function L(·)
Expected risk R(·)
Empirical risk R̂(·)
Relevance degree for document xj lj

Document xu is more relevant than document xv lu � lv

Pairwise preference between documents xu and xv lu,v

Total order of document associated with the same query πl

Ground truth label for document xj yj

Ground truth label for document pair (xu, xv) yu,v

Ground truth list for documents associated with query q πy

Ground truth permutation set for documents associated with query q Ωy

Original document index of the j-th element in permutation π π−1(j)
Rank position of document j in permutation π π(j)
Number of classes K

Index of class k

VC dimension of a function class V

Indicator function I{·}
Gain function G(·)
Position discount function η(·)

we sometimes use L(h) and L(f) interchangeably to represent the loss
function. When we need to emphasize the parameter in the scoring
function, we will use f(w,x) instead of f(x) in the discussion, although
they actually mean the same thing.

2
The Pointwise Approach

When using the technologies of ML to solve the problem of ranking,
probably the most straightforward way is to check whether existing
learning methods can be directly applied. This is exactly what the
pointwise approach does. When doing so, one assumes that the exact
relevance degree of each document is what we are going to predict,
although this may not be necessary when the target is to produce a
ranked list of the documents.

According to different ML technologies used, the pointwise approach
can be further divided into three subcategories: regression based algo-
rithms, classification based algorithms and ordinal regression based
algorithms. For regression based algorithms, the output space contains
real-valued relevance scores; for classification based algorithms, the
output space contains non-ordered categories; and for ordinal regres-
sion based algorithms, the output space contains ordered categories.
Documents together with their ground truth labels in the training set
are regarded as i.i.d. random variables sampled from the product of the
input and output spaces.

246

2.1 Regression based Algorithms 247

In the following, we will first introduce representative algorithms
in the three subcategories of the pointwise approach, and then make
discussions on their advantages and problems.

2.1 Regression based Algorithms

In this subcategory, the problem of ranking is reduced to a regression
problem, by regarding the relevance degree as real numbers. Here we
introduce two representative algorithms as examples.

2.1.1 Polynomial Regression Function

This is an early work on learning to rank [49], which uses least square
regression to learn the scoring function.

Given a group of documents x = {xj}m
j=1 associated with training

query q, the ground truth label for xj is defined as a vector. For binary
judgments, �yj = (1,0) if the document is judged as relevant, and �yj =
(0,1) otherwise. For multiple ordered categories, the k-th element of
the vector �yj is set to 1 and the other elements are set to 0, if the
document is judged as belonging to the k-th category.

Then, the scoring function is defined as �f = (f1,f2, . . .), with each
element fk as a predictor of the k-th element in �yj . Here, fk is supposed
to be selected from the polynomial function class, i.e.,

fk(xj) = wk,0 + wk,1 · xj,1 + · · · + wk,T · xj,T

+wk,T+1 · x2
j,1 + wk,T+2 · xj,1 · xj,2 + · · · , (2.1)

where wk,l is the combination coefficient, xj,l is the l-th feature in the
feature vector xj , and T is the number of features in the representation
of a document.

Next, the loss function is defined as the following square loss:

L(�f ;xj ,�yj) = ‖�yj − �f(xj)‖2. (2.2)

Suppose we are given the binary judgment, then the loss function
indicates that for a relevant document, only if the scoring function
can exactly output (1,0), there will be zero loss. Otherwise, even if
the output is (2,0), which seems to be an even stronger prediction of

248 The Pointwise Approach

relevance for this document, there will be some loss. This is, in some
sense, not very reasonable.

2.1.2 Subset Ranking with Regression

Cossock and Zhang [33] have also solved the problem of ranking by
reducing it to a regression problem.

Given x = {xj}m
j=1, a group of documents associated with training

query q, and the ground truth labels y = {yj}m
j=1 of these documents in

terms of multiple ordered categories, suppose scoring function f is used
to rank these documents. Cossock and Zhang define the loss function
as the following regression loss when performing learning to rank:

L(f ;xj ,yj) = (yj − f(xj))2. (2.3)

Furthermore, they have conducted some theoretical analysis on the
use of such a loss function. The basic conclusion is that the regression
loss can bound the ranking error (1−NDCG) (See Section 5 for more
discussions).

However, it is clear that this work also suffers from the same problem
as the polynomial regression function [49]. In many cases, it is not right
to accurately predict the value of yj since yj is actually a qualitative
judgment but not a quantitative value at all.

2.2 Classification based Algorithms

Analogously to reducing ranking to regression, one can also consider
reducing ranking to a classification problem. Since the classification
based algorithms do not regard the ground truth label as a quantitative
value, it is more reasonable than the regression based algorithms. Here
we introduce two representative algorithms in this subcategory.

2.2.1 Discriminative Model for IR

While most conventional ranking models for IR can be regarded as
generative models (e.g., the language model for IR), ML literature has
shown that discriminative models are preferred over generative models
in many recent situations. Therefore, it is worth trying to find whether

2.2 Classification based Algorithms 249

discriminative classifiers can lead to retrieval performances similar to
or even better than retrieval performances of those generative IR rank-
ing models. Actually, there has been some work that studied the use
of a discriminative classification model for relevance ranking in IR,
such as [31, 53, 90]. Here we take [90] as an example to illustrate the
basic idea.

Given documents x = {xj}m
j=1, and their binary relevance judg-

ments y = {yj}m
j=1 associated with query q, one regards all the relevant

documents (i.e., yj = 1) as positive examples while all the irrelevant
documents (i.e., yj = 0) as negative examples, and adopts the classifi-
cation technology to learn the ranking model.

Two representative classification models, Maximum Entropy (ME)
[54] and Support Vector Machines (SVM) [125, 126], were investigated
in [90]. The principle of ME is to model all that is known and to assume
nothing about the rest. So one can put all the information contained in
the training data into a constraint set, and then maximize the entropy
of the conditional probability with these constraints. SVM maximizes
the margin on the constraint set of the training data. SVM has been
proven to be one of the best classifiers in many classification tasks.
It is also associated with a nice generalization theory based on the
VC dimension, and therefore is theoretically guaranteed to have good
performance even if the number of training samples is small.

Experiments on ad-hoc retrieval indicate that the ME-based algo-
rithm is significantly worse than language models, but the SVM-based
algorithm is comparable with and sometimes slightly better than lan-
guage models. Based on this, the author argued that SVM is still pre-
ferred because of its ability to learn arbitrary features automatically,
to make fewer assumptions, and to be more expressive [90].

2.2.2 Multi-class Classification for Ranking (McRank)

Li et al. [78] proposed using multi-class classification to solve the
problem of ranking.

Given documents x = {xj}m
j=1 associated with query q, and their rel-

evance judgment y = {yj}m
j=1, suppose we have a multi-class classifier,

which makes prediction ŷj on xj . Then the loss function used to

250 The Pointwise Approach

learn the classifier is defined as an upper bound of the following 0–1
classification error:

L(ŷj ,yj) = I{yj �=ŷj}. (2.4)

In practice, different upper bounds yield different loss functions,
such as the exponential loss, the hinge loss, and the logistic loss. All of
them can be used to learn the classifier.

As for the testing process, the authors discussed how to convert clas-
sification results into ranking scores. In particular, the output of the
classifier is converted to a probability using a logistic function, indi-
cating the probability of a document belonging to a specific category.
Suppose this probability is P (ŷj = k),k = 0, . . . ,K − 1 (where K is the
number of the categories given in the judgment). Then the following
weighted combination is used to determine the final ranking scores of
a document:

f(xj) =
K−1∑
k=0

k · P (ŷj = k). (2.5)

2.3 Ordinal Regression based Algorithms

Ordinal regression1 takes the ordinal relationship among the ground
truth labels into consideration when learning the ranking model.

Suppose there are K ordered categories. The goal of ordinal regres-
sion is to find a scoring function, such that one can easily use thresholds
b0 ≤ b2 ≤ ·· · ≤ bK−1 to distinguish the outputs of the scoring function
into different ordered categories,2 although this may not be necessary
from the ranking point of view.

In the literature, there are several methods in this subcategory, such
as [24, 25, 26, 34, 114]. We will introduce some of them as follows.

1 Ordinal regression sometimes was also directly referred to as “ranking” in previous works
[115].

2 Note that there are some algorithms, such as [68], which were also referred to as ordinal
regression based algorithms in the literature. According to our categorization, however,
they belong to the pairwise approach since they do not really care about the accurate
assignment of a document to one of the ordered categories. Instead, they focus more on
the relative order between two documents.

2.3 Ordinal Regression based Algorithms 251

2.3.1 Perceptron based Ranking (PRanking)

PRanking is a famous algorithm on ordinal regression [34]. The goal of
PRanking is to find a direction defined by a parameter vector w, after
projecting the documents onto which one can easily use thresholds to
distinguish the documents into different ordered categories.

This goal is achieved by means of an iterative learning pro-
cess. On iteration t, the learning algorithm gets an instance
xj associated with query q. Given xj , the algorithm predicts
ŷj = argmink{wT xj − bk < 0}. It then receives the ground truth
label yj . If the algorithm makes a mistake by predicting the category of
xj as ŷj instead of yj then there is at least one threshold, indexed by k,
for which the value of wT xj is on the wrong side of bk. To correct the
mistake, we need to move the values of wT xj and bk toward each other.

Let us see an example, shown in Figure 2.1. Suppose now we have
model parameter w and document xj . According to the output of the
scoring function, this document seems to belong to the second category.
However, its ground truth label indicates that it should belong to the
fourth category. Then, the algorithm will lower down thresholds b2

and b3. After that, the model parameter w is adjusted as w = w + xj ,

Fig. 2.1 Learning process of PRanking.

252 The Pointwise Approach

just as in many perceptron based algorithms. This process is repeated
until the training process converges.

Harrington [59] later proposed using random sub-sampling to fur-
ther improve the performance of PRanking. They first sub-sample
the training data, and learn a PRanking model using each sample.
After that, the weights and thresholds associated with the models are
averaged to produce the final model. It has been proven that in this
way a better generalization ability can be achieved [62].

2.3.2 Ranking with Large Margin Principles

Shashua and Levin [114] tried to use SVM to learn model parameter w

and thresholds bk(k = 0, . . . ,K − 1), for ordinal regression.
Specifically, two strategies were proposed. The first one is referred

to as the fixed margin strategy.
Given n training queries {qi}n

i=1, their associated documents x(i) =
{x

(i)
j }m(i)

j=1 , and the corresponding relevance judgments y(i) = {y
(i)
j }m(i)

j=1 ,
the learning process is defined below, where the adoption of a linear
scoring function is assumed. The constraints basically require every
document to be correctly classified into its target ordered category,
i.e., for documents in category k, wT x

(i)
j should exceed threshold bk−1

but be smaller than threshold bk, with certain soft margins (i.e., 1 −
ξ
(i)∗
j,k−1 and 1 − ξ

(i)
j,k, respectively). The margin term 1

2‖w‖2 controls the
complexity of model w.

min
1
2
‖w‖2 + C

n∑
i=1

m(i)∑
j=1

K−2∑
k=0

(
ξ
(i)
j,k + ξ

(i)∗
j,k+1

)
s.t. wT x

(i)
j − bk ≤ −1 + ξ

(i)
j,k, if y

(i)
j = k,

wT x
(i)
j − bk ≥ 1 − ξ

(i)∗
j,k+1, if y

(i)
j = k + 1,

ξ
(i)
j,k ≥ 0, ξ

(i)∗
j,k+1 ≥ 0,

j = 1, . . . ,m(i), i = 1, . . . ,n, k = 0, . . . ,K − 2. (2.6)

The second strategy is called the sum of margins strategy. In this
strategy, some additional thresholds ak are introduced, such that for

2.3 Ordinal Regression based Algorithms 253

category k, bk−1 is its lower-bound threshold and ak is its upper-bound
threshold. Accordingly, the constraints become that for documents in
category k, wT x

(i)
j should exceed threshold bk−1 but be smaller than

threshold ak, with certain soft margins (i.e., 1 − ξ
(i)∗
j,k−1 and 1 − ξ

(i)
j,k,

respectively). The corresponding learning process can be expressed as
follows, from which we can see that the margin term

∑K−1
k=0 (ak − bk)

really has the meaning of “margin” (in Figure 2.2, (bk − ak) is exactly
the margin between category k + 1 and category k):

min
K−1∑
k=0

(ak − bk) + C

n∑
i=1

m(i)∑
j=1

K−2∑
k=0

(
ξ
(i)
j,k + ξ

(i)∗
j,k+1

)
s.t. ak ≤ bk ≤ ak+1,

wT x
(i)
j ≤ ak + ξ

(i)
j,k, if y

(i)
j = k,

wT x
(i)
j ≥ bk − ξ

(i)∗
j,k+1, if y

(i)
j = k + 1,

‖w‖2 ≤ 1, ξ
(i)
j,k ≥ 0, ξ

(i)∗
j,k+1 ≥ 0,

j = 1, . . . ,m(i), i = 1, . . . ,n, k = 0, . . . ,K − 2. (2.7)

Ideally in the above methods, one requires bk (k = 0, . . . ,K − 1)
to be in an increasing order, i.e., bk−1 ≤ bk. However, in practice,
since there are no clear constraints on the thresholds in the optimiza-
tion problem, the learning process cannot always guarantee this. To
tackle the problem, Chu and Keerthi [26] proposed adding explicit or
implicit constraints on the thresholds to the optimization problem. The
explicit constraint simply takes the form of bk−1 ≤ bk, while the implicit
constraint uses redundant training examples to guarantee the ordinal
relationship among thresholds.

Fig. 2.2 Sum of margin strategy.

254 The Pointwise Approach

2.4 Discussions

In this subsection, we first discuss the relationship between the point-
wise approach and some early learning methods in IR, such as relevance
feedback. Then, we discuss the problems with the pointwise approach
by considering the distinct properties of IR.

2.4.1 Relationship with Relevance Feedback

The pointwise approach of learning to rank, especially the classifica-
tion based algorithms, has strong correlation with the relevance feed-
back algorithms [39, 112]. The relevance feedback algorithms, which
have played an important role in IR literature, also leverage supervised
learning technologies to improve the retrieval accuracy. The basic idea is
to learn from explicit, implicit, or blind feedback to update the original
query. Then the new query is used to retrieve a new list of documents.
By doing this in an iterative manner, we can bring the original query
closer to the optimal query so as to improve the retrieval performance.

Here we take the famous Rocchio algorithm [112] as an example
to make discussions on the relationship between relevance feedback
and learning to rank. The specific way that the Rocchio algorithm
updates the query is as follows. First, both query q and its associated
documents are represented in a vector space. Second, through relevance
feedback, {xj}m+

j=1 are identified as relevant documents (i.e., yj = 1), and

{xj}m++m−
j=m++1 are identified as irrelevant documents (i.e., yj = 0). Third,

the query vector is updated according to the following heuristic:

q̃ = αq + β
1

m+

m+∑
j=1

xj − γ
1

m−

m++m−∑
j=m++1

xj . (2.8)

If we use the VSM model for retrieval, the documents will then be
ranked according to their inner products with the new query vector q̃.
Mathematically, we can define the corresponding ranking function as:

f(xj) = q̃T xj . (2.9)

In this sense, we can regard the query vector as the model parame-
ter. For ease of discussion, we use w to represent this vector, i.e., w = q̃.

2.4 Discussions 255

Then, as shown in [77], there is actually a hidden loss function behind
the above query update process, which is a function of w and x. That is:

L(f,xj ,yj) =


1

m+

(1−α
4 ‖w‖2 − βwT xj

)
, yj = 1,

1
m−

(1−α
4 ‖w‖2 + γwT xj

)
, yj = 0.

(2.10)

In other words, the Rocchio algorithm also minimizes a certain
pointwise loss function. In this sense, it looks quite similar to the
pointwise approach of learning to rank. However, we would like to
point out its significant differences from what we call learning to rank,
as shown below.

• The feature space in the Rocchio algorithm is the standard
vector space as used in VSM. In this space, both queries and
documents are represented as vectors, and their inner prod-
uct defines the relevance. In contrast, in learning to rank, the
feature space contains features extracted from each query-
document pair. Only documents have feature representa-
tions, and the query is not a vector in the same feature space.

• The Rocchio algorithm learns the model parameter from
the feedback on a given query, and then uses the model to
rank the documents associated with the same query. It does
not consider the generalization of the model across queries.
However, in learning to rank, we learn the ranking model
from a training set, and mainly use it to rank the documents
associated with unseen test queries.

• The model parameter w in the Rocchio algorithm actually
has its physical meaning, i.e., it is the updated query vector.
However, in learning to rank, the model parameter does not
have such a meaning and only corresponds to the importance
of each feature to the ranking task.

• The goal of the Rocchio algorithm is to update the query
formulation for a better retrieval but not to learn an optimal
ranking function. In other words, after the query is updated,
the fixed ranking function (e.g., the VSM model) is used to
return a new list of related documents.

256 The Pointwise Approach

2.4.2 Problems with the Pointwise Approach

The algorithms belonging to the pointwise approach are highly cor-
related with each other. For example, when the number of categories
K = 2, the ordinal regression problem will naturally reduce to a binary
classification problem. Therefore, these algorithms have similar prob-
lems when dealing with the task of learning to rank.

Since the input object in the pointwise approach is a single docu-
ment, the relative order between documents cannot be naturally consid-
ered in the learning process, although ranking is more about predicting
relative order than accurate relevance degree. Furthermore, the two
intrinsic properties of the evaluation measures for ranking (i.e., query-
level and position-based) cannot be well considered by the pointwise
approach. First, the fact is ignored in the approach that some docu-
ments are associated with the same query and some others are not. As
a result, when the number of associated documents varies largely for
different queries,3 the overall loss function will be dominated by those
queries with a large number of documents. Second, the position of each
document in the ranked list is invisible to the pointwise loss functions.
Therefore, the pointwise loss function may unconsciously overempha-
size those unimportant documents (which are ranked low in the final
ranked list and thus do not affect user experiences).

Given the above problems, the pointwise approach can only be a
sub-optimal solution to ranking. To tackle the problem, people have
made attempts at regarding a document pair, or the entire group of
documents associated with the same query, as the input object. This
results in the pairwise and listwise approaches of learning to rank. With
the pairwise approach, the relative order among documents can be
better modeled. With the listwise approach, the position information
can be visible to the learning-to-rank process.

3 For the re-ranking scenario, the number of documents to rank for each query may be very
similar, e.g., top 1000 documents per query. However, if we consider all the documents
containing the query word, the difference between the number of documents for popular
queries and that for tail queries may be very large.

3
The Pairwise Approach

The pairwise approach1 does not focus on accurately predicting the
relevance degree of each document; instead, it cares about the relative
order between two documents. In this sense, it is closer to the concept
of “ranking” than the pointwise approach.

In the pairwise approach, the ranking problem is reduced to a clas-
sification problem on document pairs. That is, the goal of learning is to
minimize the number of miss-classified document pairs (i.e., the goal of
the classification is to make positive predictions on those pairs whose
first document is more relevant than the second document, and make
negative predictions on other pairs). In the extreme case, if all the doc-
ument pairs are correctly classified, all the documents will be correctly
ranked. Note that this classification differs from the classification in the
pointwise approach, since it operates on every two documents under
investigation. Note that document pairs are not independent, which
violates the basic assumption of classification. In this case, although
one can still use classification algorithms to learn the ranking model, a
different theoretical framework is needed to analyze the generalization
of the learning process. We will make discussions on this in Section 7.

1 Also referred to as preference learning in the literature.

257

258 The Pairwise Approach

In the rest of this section, we will introduce several representative
algorithms that belong to the pairwise approach.

3.1 Example Algorithms

3.1.1 Ordering with Preference Function

In [29], a hypothesis h(xu,xv) directly defined on a pair of documents
is studied (i.e., without use of the scoring function f). In particular,
given two documents xu and xv associated with a training query q, the
loss function is defined below:

L(h;xu,xv,yu,v) =
|yu,v − h(xu,xv)|

2
, (3.1)

where the hypothesis is defined as h(xu,xv) =
∑

t wtht(xu,xv) and
ht(xu,xv) is called the base preference function.

Suppose ht(xu,xv) only takes a value from {1,−1}, where a value
of 1 indicates that document xu is ranked before xv, and a value of
−1 indicates the opposite. Then, we can easily find if the ground truth
label indicates that document xu should be ranked before document
xv (i.e., yu,v = 1) but if h(xu,xv) = −1, there will be a loss of one for
this pair of documents. When all the pairs are incorrectly ranked, the
average loss on the training set will reach its maximum value of one.
On the other hand, when all the pairs are correctly ranked, we can get
the minimum loss of zero.

With the above loss function, the weighted majority algorithm, e.g.,
the Hedge algorithm, is used to learn the parameters in hypothesis h.
Note that h is actually a preference function, which cannot directly
output the ranked list of the documents. In this case, an additional step
is needed to convert the pairwise preference between any two documents
to the total order of all the documents. To this end, one needs to find
the ranked list π, which has the largest agreement with the pairwise
preferences. This process is described below:

max
π

∑
u<v

h(xπ−1(u),xπ−1(v)). (3.2)

As we know, this is a typical problem called rank aggregation. It
has been proven NP-hard to find the optimal solution to the above

3.1 Example Algorithms 259

optimization problem. To tackle the challenge, a greedy ordering algo-
rithm was proposed in [29], which can be much more efficient, and its
agreement with the pairwise preferences is at least half the agreement
of the optimal algorithm.

3.1.2 RankNet and FRank

RankNet [14] is probably the first learning-to-rank algorithm used by
commercial search engines.2

In RankNet, the loss function is also defined on a pair of documents,
but the hypothesis is defined with the use of a scoring function f . Given
two documents xu and xv associated with training query q, a target
probability P̄u,v is constructed based on their ground truth labels. For
example, we can define P̄u,v = 1, if yu,v = 1; P̄u,v = 0, otherwise. Then,
the modeled probability Pu,v is defined based on the difference between
the scores of these two documents given by the scoring function, i.e.,

Pu,v(f) =
exp(f(xu) − f(xv))

1 + exp(f(xu) − f(xv))
. (3.3)

Then the cross entropy between the target probability and the mod-
eled probability is used as the loss function, which we refer to as the
cross entropy loss for short.

L(f ;xu,xv,yu,v) = −P̄u,v logPu,v(f)

−(1 − P̄u,v) log(1 − Pu,v(f)). (3.4)

A neural network is then used as the model and gradient descent
as the optimization algorithm to learn scoring function f . In [84], a
nested ranker is built on top of RankNet to further improve the retrieval
performance.

Tsai et al. [122] pointed out some problems with the loss function
used in RankNet. The curve of the cross entropy loss as a function of
f(xu) − f(xv) is plotted in Figure 3.1. From this figure, one can see
that in some cases, the cross entropy loss has a non-zero minimum,
indicating that there will always be some loss no matter what kind

2 As far as we know, Microsoft Live Search (http://www.live.com/) is using the model
trained with a variation of RankNet.

260 The Pairwise Approach

Fig. 3.1 Cross entropy loss as a function of f(xu) − f(xv).

of model is used. This may not be in accordance with our intuition
of a loss function. Furthermore, the loss is not bounded, which may
lead to the dominance of some difficult document pairs in the training
process.

To tackle these problems, a new loss function named the fidelity loss
was proposed [122], which has the following form:

L(f ;xu,xv,yu,v) = 1 −
√

P̄u,vPu,v(f)

−
√

(1 − P̄u,v)(1 − Pu,v(f)). (3.5)

The fidelity was originally used in quantum physics to measure
the difference between two probabilistic states of a quantum. When
being used to measure the difference between the target probability
and the modeled probability, the fidelity loss has the shape as shown in
Figure 3.2 as a function of f(xu) − f(xv). By comparing the fidelity loss
with the cross entropy loss, we can see that the fidelity loss is bounded
between 0 and 1, and always has a zero minimum. These properties
are nicer than those of the cross-entropy loss. On the other hand, how-
ever, while the cross-entropy loss is convex, the fidelity loss becomes
non-convex. In theory, such a non-convex objective is more difficult
to optimize. Overall, according to the experimental results reported in
[122], FRank outperforms RankNet on several datasets.

3.1 Example Algorithms 261

Fig. 3.2 Fidelity loss as a function of f(xu) − f(xv).

3.1.3 RankBoost

The method of RankBoost [47] adopts AdaBoost [48] for the classifica-
tion over document pairs. The only difference between RankBoost and
AdaBoost is that the distribution in RankBoost is defined on document
pairs while that in AdaBoost is defined on individual documents.

The algorithm flow of RankBoost is given in Algorithm 1, where Dt

is the distribution on document pairs, ft is the weak ranker selected at
the t-th iteration, and αt is the weight for linearly combining the weak
rankers. RankBoost actually minimizes the exponential loss defined
below:

L(f ;xu,xv,yu,v) = exp(−yu,v(f(xu) − f(xv))). (3.6)

Algorithm 1 Learning Algorithm for RankBoost
Input: document pairs
Given: initial distribution D1 on input document pairs.
For t = 1, . . . ,T

Train weak ranker ft based on distribution Dt.
Choose αt

Update Dt+1(x
(i)
u ,x

(i)
v) = 1

Zt
Dt(x

(i)
u ,x

(i)
v)exp(αt(ft(x

(i)
u) − ft(x

(i)
v)))

where Zt =
∑n

i=1
∑

u,v:y(i)
u,v=1

Dt(x
(i)
u ,x

(i)
v)exp(αt(ft(x

(i)
u) − ft(x

(i)
v))).

Output: f(x) =
∑

t αtft(x).

262 The Pairwise Approach

From Algorithm 1, one can see that RankBoost learns the optimal
weak ranker ft and its coefficient αt based on the current distribution
of the document pairs (Dt). Three ways of choosing αt are discussed
in [47].

• First, most generally, for any given weak ranker ft, it can be
shown that Zt, viewed as a function of αt, has a unique min-
imum, which can be found numerically via a simple binary
search.

• The second method is applicable in the special case that ft

takes a value from {0,1}. In this case, one can minimize Zt

analytically as follows. For b ∈ {−1,0,1}, let

Wt,b =
n∑

i=1

∑
u,v:y(i)

u,v=1

Dt

(
x(i)

u ,x(i)
v

)
I{ft(x

(i)
u)−ft(x

(i)
v)=b}. (3.7)

Then

αt =
1
2

log
(

Wt,−1

Wt,1

)
. (3.8)

• The third way is based on the approximation of Zt, which is
applicable when ft takes a real value from [0, 1]. In this case, if
we define:

rt =
n∑

i=1

∑
u,v:y(i)

u,v=1

Dt

(
x(i)

u ,x(i)
v

)(
ft

(
x(i)

u

)
− ft

(
x(i)

v

))
, (3.9)

then

αt =
1
2

log
(

1 + rt

1 − rt

)
. (3.10)

Because of the analogy to AdaBoost, RankBoost inherits many nice
properties from AdaBoost, such as the ability in feature selection, con-
vergence in training, and certain generalization abilities.

3.1.4 Ranking SVM

Ranking SVM [63, 68] uses SVM for the task of pairwise classifica-
tion. Given n training queries {qi}n

i=1, their associated document pairs

3.2 Discussions 263

(x(i)
u ,x

(i)
v), and the corresponding ground truth label y

(i)
u,v, the mathe-

matical formulation of Ranking SVM is as shown below, where a linear
scoring function is used, i.e., f(x) = wT x,

min
1
2
‖w‖2 + C

n∑
i=1

∑
u,v:y(i)

u,v=1

ξ(i)
u,v

s.t. wT (x(i)
u − x(i)

v) ≥ 1 − ξ(i)
u,v, if y(i)

u,v = 1,

ξ(i)
u,v ≥ 0, i = 1, . . . ,n. (3.11)

As we can see, the objective function in Ranking SVM is exactly the
same as in SVM, where the margin term 1

2‖w‖2 controls the complexity
of model w. The difference between Ranking SVM and SVM lies in
the constraints, which are constructed from document pairs. The loss
function in Ranking SVM is a hinge loss defined on document pairs.
For example, for a training query q, if document xu is labeled as being
more relevant than document xv (mathematically, yu,v = +1), then if
wT xu is larger than wT xv by a margin of 1, there is no loss. Otherwise,
the loss will be ξu,v.

Since Ranking SVM is well rooted in the framework of SVM, it
inherits nice properties of SVM. For example, with the help of mar-
gin maximization, Ranking SVM can have good generalization ability.
Kernel tricks can also be applied to Ranking SVM, so as to handle
complex non-linear problems.

3.2 Discussions

3.2.1 Extension of the Pairwise Approach

Note that in the above algorithms, pairwise preference is used as the
ground truth label. When we are given the relevance judgment in terms
of multiple ordered categories, however, converting it to pairwise pref-
erence will lead to the absence of the information about the finer gran-
ularity in the relevance judgment.

To tackle the problem, Qin et al. [97] proposed a new algo-
rithm named the multiple hyperplane ranker (MHR). The basic idea
is “divide-and-conquer”. Suppose there are K different categories of

264 The Pairwise Approach

Fig. 3.3 Training multiple rankers.

judgments, then one can train K(K − 1)/2 Ranking SVM models in
total, with each model trained from the document pairs with two spe-
cific categories of judgments (see Figure 3.3). At the test phase, rank
aggregation is used to merge the ranking results given by each model to
produce the final ranking result. For instance, suppose that the model
trained from categories k and l is denoted by fk,l, then the final ranking
results can be attained by using the weighted Borda Count aggregation:

f(x) =
∑
k,l

αk,lfk,l(x). (3.12)

Here the combination coefficient αk,l can be pre-specified or learned
from a separate validation set. The experimental results in [97] show
that by considering more information about the judgment, the ranking
performance can be significantly improved over Ranking SVM. Note
that the technology used in MHR can actually be extended to any
other pairwise ranking algorithm.

3.2.2 Improvement of the Pairwise Approach

It seems that the pairwise approach has its advantages as compared to
the pointwise approach, since it can model the relative order between
documents. However, in some cases, it faces even larger challenges than
the pointwise approach. In Section 2.4, we have mentioned the prob-
lem of the pointwise approach when documents are distributed in an

3.2 Discussions 265

imbalanced manner across queries. Here this issue becomes even more
serious in the pairwise approach. Considering that every two docu-
ments associated with the same query can create a document pair if
their relevance degrees are different, in the worse case, the pair number
can be quadratic to the document number. As a result, the difference
in the numbers of document pairs is usually significantly larger than
the difference in the numbers of documents. This phenomenon has been
observed in some previous studies. For example, as reported in [99, 102],
the distributions of pair numbers per query can be very skewed even
if the document numbers of different queries are similar to each other
(see Figure 3.4 for the distribution of a dataset from a commercial
search engine), indicating that the above problem is really very serious
in practice.

In this case, the pairwise loss function will be seriously dominated
by the queries with large numbers of document pairs, and as a result
the pairwise loss function will become inconsistent with the query-level
IR evaluation measures. To tackle the problem, Cao et al. [16] and Qin
et al. [99, 102] proposed introducing query-level normalization to the
pairwise loss function. That is, the pairwise loss for a query will be nor-
malized by the total number of document pairs associated with that
query. In this way, the normalized pairwise losses with regards to differ-
ent queries will become comparable with each other in their magnitude,
no matter how many document pairs they are originally associated

Fig. 3.4 Distribution of pair numbers per query.

266 The Pairwise Approach

with. With this kind of query-level normalization, Ranking SVM will
become a new algorithm, which we call IR-SVM [16]. Specifically, given
n training queries {qi}n

i=1, their associated document pairs (x(i)
u ,x

(i)
v),

and the corresponding relevance judgment y
(i)
u,v, IR-SVM solves the fol-

lowing optimization problem:

min
1
2
‖w‖2 + C

n∑
i=1

∑
u,v:y(i)

u,v=1
ξ
(i)
u,v

m̃(i)

s.t. wT
(
x(i)

u − x(i)
v

)
≥ 1 − ξ(i)

u,v, if y(i)
u,v = 1

ξ(i)
u,v ≥ 0; i = 1, . . . ,n, (3.13)

where m̃(i) is the number of document pairs associated with query qi.
According to the experimental results in [16, 99, 102], a significant

performance improvement has been observed after the query-level nor-
malization is introduced.

4
The Listwise Approach

The listwise approach can be divided into two sub-categories. For the
first sub-category, the output space contains the relevance degrees of all
the documents associated with a query (i.e., y), and the loss function is
defined based on the approximation or bound of widely used IR evalu-
ation measures. For the second sub-category, the output space contains
the permutation of the documents associated with the same query (i.e.,
πy), and the loss function measures the difference between the permu-
tation given by the hypothesis and the ground truth permutation.

In the following, we will introduce both sub-categories and their
representative algorithms.

4.1 Direct Optimization of IR Evaluation Measures

It might be the most straightforward choice to learn the ranking model
by directly optimizing what is used to evaluate the ranking perfor-
mance. This is exactly the motivation of the first sub-category of the
listwise approach, which we call the direct optimization methods. How-
ever, the task is not as trivial as it seems. As we mentioned before, IR
evaluation measures, such as NDCG and MAP, are position based, and

267

268 The Listwise Approach

thus non-continuous and non-differentiable [110, 132]. The difficulty
in optimizing such objective functions stems from the fact that most
existing optimization techniques were developed to handle continuous
and differentiable cases.

To tackle the challenges, several attempts have been made. First,
one can choose to optimize a continuous and differentiable approx-
imation of the IR evaluation measure. By doing so, many exist-
ing optimization technologies can be leveraged. Example algorithms
include SoftRank [119] and AppRank [98]. Second, one can alternatively
optimize a continuous and differentiable (and sometimes even con-
vex) bound of the IR evaluation measure. Example algorithms include
SVMmap [136], SVMndcg [20], and PermuRank [132]. Actually, this trick
has also been used in classification.1 Third, one can choose to use opti-
mization technologies that are able to optimize complex objectives. For
example, one can leverage the Boosting framework for this purpose (the
corresponding algorithm is called AdaRank [131]), or adopt the genetic
algorithm for the optimization (the corresponding algorithm is called
RankGP [134]).

In the rest of this subsection, we will take SoftRank, SVMmap,
AdaRank, and RankGP as examples to introduce the direct optimiza-
tion methods.

4.1.1 SoftRank

SoftRank [119] introduces randomness to the ranking scores of the doc-
uments, and then uses the expectation of NDCG as an approximation
of the original IR evaluation measure NDCG.

First, SoftRank defines the score distribution. Given x = {xj}m
j=1

associated with training query q, score sj of document xj is treated
as no longer a deterministic value but a random variable. The random
variable is governed by a Gaussian distribution whose variance is σs

and mean is f(xj), the original score outputted by the scoring function.
That is:

p(sj) = N(sj |f(xj),σ2
s). (4.1)

1 Since the 0–1 classification loss is non-differentiable, convex upper bounds like the expo-
nential loss have been used instead.

4.1 Direct Optimization of IR Evaluation Measures 269

Second, SoftRank defines the rank distribution. Due to the random-
ness in the score, every document has the probability of being ranked
at any position. Specifically, based on the score distribution, the prob-
ability of a document being ranked before another can be deduced as
follows:

pu,v =
∫ ∞

0
N
(
s |f(xu) − f(xv),2σ2

s

)
ds. (4.2)

On this basis, the rank distribution can be derived in an iterative
manner. Let us consider adding the documents into the ranked list one
after another. Suppose we already have document xj in the ranked
list, when adding document xu, if document xu can beat xj the rank
of xj will be increased by one. Otherwise the rank of xj will remain
unchanged. Mathematically, the probability of xj being ranked at posi-
tion r (denoted as pj(r)) can be computed as follows:

pu
j (r) = p

(u−1)
j (r − 1)pu,j + p

(u−1)
j (r)(1 − pu,j). (4.3)

Third, with the rank distribution, SoftRank computes the expec-
tation of NDCG@m (where m is the total number of documents
associated with the query) as the objective function for learning to
rank (which we call SoftNDCG2). In other words, (1−SoftNDCG) cor-
responds to the loss function in SoftRank.

SoftNDCG � 1
Zm

m∑
j=1

(2yj − 1)
m−1∑
r=0

η(r)pj(r). (4.4)

In order to learn ranking model f by maximizing SoftNDCG, one
can use a neural network as the model, and gradient descent as the
optimization algorithm. In [55], the Gaussian process is used to further
enhance SoftRank, where σs is no longer a pre-specified constant but
a learned parameter.

4.1.2 SVMmap

SVMmap [136] uses the framework of structured SVM [70, 123] to
optimize the IR evaluation measure AP.

2 For ease of reference, we also refer to the objective functions like SoftNDCG as the surro-
gate measure.

270 The Listwise Approach

Suppose x = {xj}m
j=1 represents all the documents associated with

training query q, its corresponding ground truth label is y = {yj}m
j=1

(yj = 1, if document xj is labeled as relevant; yj = 0, otherwise), and
any incorrect label of x is represented as yc. Then SVMmap is for-
mulated as follows, where AP is used in the constraints of structured
SVM. It has been proven that the sum of slacks in SVMmap can bound
(1 − AP) from above.

min
1
2
‖w‖2 +

C

n

n∑
i=1

ξ(i)

s.t. ∀yc(i) �= y(i),

wT Ψ(y(i),x(i)) ≥ wT Ψ(yc(i),x(i)) + 1 − AP(yc(i)) − ξ(i). (4.5)

Here Ψ is called the joint feature map, whose definition is given as
below:

Ψ(y,x) =
∑

u,v:yu=1,yv=0

(xu − xv). (4.6)

Ψ(yc,x) =
∑

u,v:yu=1,yv=0

(yc
u − yc

v)(xu − xv). (4.7)

As we know, there are an exponential number of incorrect labels for
the documents, and thus the optimization problem has an exponential
number of constraints for each query. Therefore, it is a big challenge to
directly solve such an optimization problem. To tackle the challenge, a
working set is maintained, which only contains those constraints with
the largest violation (defined below), and the optimization is performed
only with respect to this working set.

Violation � 1 − AP(yc) + wT Ψ(yc,x). (4.8)

Then the problem is to efficiently find the most violated constraints
for a given scoring function f(x) = wT x. To this end, the property of
AP is considered. That is, if the relevance at each position is fixed, AP
will be the same no matter which document appears at that position.
Furthermore, with the same AP, if the documents are sorted according
to the descending order of their scores, wT Ψ(yc,x) will be maximized.

4.1 Direct Optimization of IR Evaluation Measures 271

Therefore, an efficient strategy to find the most violated constraint can
be designed [136], whose time complexity is O(m logm), where m is the
number of documents associated with query q.

In [20, 21], the idea of SVMmap is further extended to optimize other
IR evaluation measures, and the corresponding algorithms are named
as SVMndcg and SVMmrr. Basically, different feature maps or different
strategies of searching the most violated constraints are used in these
extensions, but the idea remains the same as that of SVMmap.

4.1.3 AdaRank

Xu and Li [131] found that IR evaluation measures can be plugged into
the framework of Boosting and get effectively optimized. This process
does not require IR evaluation measures to be continuous and differen-
tiable. The resultant algorithm is called AdaRank.

As we know, in conventional AdaBoost the exponential loss is
used to update the distribution of input objects and to determine the
combination coefficient αt at each round of iteration. Analogously, in
AdaRank, IR evaluation measures are used to update the distribution
of queries and to compute the combination coefficient. The algorithm
flow is shown below, where M(f,x,y) represents the IR evaluation
measure.

Due to the analogy to AdaBoost, AdaRank can focus on hard
queries. Furthermore, a condition for the convergence of the training

Algorithm 2 Learning Algorithms for AdaRank
Input: document group for each query
Given: initial distribution D1 on input queries
For t = 1, . . . ,T

Train weak ranker ft(·) based on distribution Dt.

Choose αt = 1
2 log

∑n
i=1 Dt(i)(1+M(ft,x(i),y(i)))∑n
i=1 Dt(i)(1−M(ft,x(i),y(i)))

Update Dt+1(i) = exp(−M(
∑t

s=1 αsfs,x(i),y(i)))∑n
j=1 exp(−M(

∑t
s=1 αsfs,x(j),y(j)))

,

Output:
∑

t αtft(·).

272 The Listwise Approach

process was given in [131], with a similar derivation technique to
that for AdaBoost. The condition requires |M(

∑t
s=1 αsfs,x,y) −

M(
∑t−1

s=1 αsfs,x,y) − αtM(ft,x,y)| to be very small. This implies the
assumption on the linearity of IR evaluation measure M , as a func-
tion of ft. However, this assumption may not be well satisfied in prac-
tice. Therefore, it is possible that the training process of AdaRank
does not naturally converge and some additional stopping criteria are
needed.

4.1.4 Genetic Programming based Algorithms

There are some methods originally designed for optimizing complex
objectives. Genetic programming is just one such method. In the lit-
erature of learning to rank, there have been several attempts on using
genetic programming to optimize IR evaluation measures. Representa-
tive algorithms include [4, 41, 42, 43, 44, 45, 46, 121, 134].

Here we take the algorithm named RankGP [134] as an example
to illustrate how genetic programming can be used to learn the rank-
ing model. In this algorithm, the ranking model is defined as a tree,
whose leaf nodes are features or constants, and non-leaf nodes are
operators such as +,−,×,÷ (see Figure 4.1). Then single population
genetic programming is used to perform learning on the tree. Cross-
over, mutation, reproduction, and tournament selection are used as evo-
lution mechanisms, and the IR evaluation measure is used as the fitness
function.

In addition to the examples introduced above, there are also some
other works [13, 86, 110] that directly optimize IR evaluation measures.
Due to space restrictions, we will not introduce them in detail.

Fig. 4.1 Ranking function used in RankGP.

4.2 Minimization of Listwise Ranking Losses 273

4.2 Minimization of Listwise Ranking Losses

In the second sub-category of the listwise approach, the loss function
measures the inconsistency between the output of the ranking model
and the ground truth permutation πy. Although IR evaluation measures
are not directly optimized here, if one can consider the distinct proper-
ties of ranking in IR in the design of the loss function, it is also possible
that the model learned can have good performance in terms of IR eval-
uation measures. We refer to these algorithms as “algorithms that min-
imize listwise ranking losses”. In this subsection, we will introduce two
representative algorithms of them, i.e., ListNet [17] and ListMLE [129].

4.2.1 ListNet

In [17], a listwise ranking loss is proposed, which is based on the prob-
ability distribution on permutations.

Actually the distributions on permutations have been well studied
in the field of probability theory. Many famous models have been pro-
posed to represent permutation probability distributions, such as the
Luce model [81, 95] and the Mallows model [82]. Since a permuta-
tion has a natural one-to-one correspondence with a ranked list, these
researches can be naturally applied to ranking. ListNet [17] is just such
an example, demonstrating how to apply the Luce model to learning
to rank.

Given the relevance scores of the documents outputted by scoring
function f (i.e., s = {sj}m

j=1, where sj = f(xj)), the Luce model defines
a probability for each possible permutation π of the documents, based
on the chain rule, as follows:

P (π |s) =
m∏

j=1

ϕ(sπ−1(j))∑m
u=j ϕ(s−1π(u))

, (4.9)

where π−1(j) denotes the document ranked at the j-th position of
permutation π, ϕ is a transformation function, which can be lin-

ear, exponential, or sigmoid. Each item
ϕ(sπ−1(j))∑m

u=j ϕ(sπ−1(u))
is a conditional

probability as shown in the following example.

274 The Listwise Approach

Suppose we have in total three documents A, B, and C associated
with query q. The probability of permutation π = (A,B,C) is equal to
the product of the following three probabilities (i.e., Pπ = P1P2P3).

• P1: the probability of document A being ranked at the top
position in π. This probability is computed by comparing the
score of A with those of all the other documents.

P1 =
ϕ(sA)

ϕ(sA) + ϕ(sB) + ϕ(sC)
. (4.10)

• P2: the conditional probability of document B being ranked
at the second position given that A has already been ranked
at the first position. This probability is computed by com-
paring the score of B with those of the other documents
except A. In this simple example, there is only document C

to be compared with.

P2 =
ϕ(sB)

ϕ(sB) + ϕ(sC)
. (4.11)

• P3: the conditional probability of document C being ranked
on the third position given that documents A and B have
already been ranked in the top two positions respectively. In
our simple case, it is easy to see P3 = 1.

With the Luce model, for a given query q, ListNet first defines
the permutation probability distribution based on the scores given by
scoring function f . Then it defines another permutation probability
distribution Py(π) based on the ground truth label.3 For the next step,
ListNet uses the K–L divergence between these two distributions to
define its listwise ranking loss (which we call the K–L divergence loss
for short).

L(f ;x,πy) = D(P (π |ϕ(f(w,x)))‖Py(π)). (4.12)

3 For example, if the ground truth is given in terms of relevance degree, it can be directly
substituted into the Luce model to define a probability distribution. If the ground truth
label is given as a ranked list, one can simply define the probability distribution as a delta
function, or use a mapping function to map it to real-valued scores of the documents and
then apply the Luce model. One can also use other ways such as the Mallows model to
define the permutation probability distribution of the ground truth label.

4.2 Minimization of Listwise Ranking Losses 275

A neural network model is employed in ListNet, and the gradi-
ent descent approach is used to minimize the K–L divergence loss.
As shown in [17], the training curve of ListNet well demonstrates the
correlation between the K–L divergence loss and 1 − NDCG@5.

As one may have noticed, there is a computational issue with
ListNet. Due to the use of the scoring function, the testing complex-
ity of ListNet can be the same as those of the pointwise and pairwise
approaches, however the training complexity of ListNet is much higher.
The training complexity of ListNet is in the exponential order of m (and
thus intractable in practice), because the evaluation of the K–L diver-
gence loss for each query q requires the addition of m-factorial terms.
Comparatively speaking, the training complexities of the pointwise and
pairwise approaches are roughly proportional to the number of docu-
ments (i.e., O(m)) and the number of document pairs (i.e., O(m̃)). To
tackle the problem, a top-k version of the K–L divergence loss is fur-
ther introduced in [17], which is based on the top-k Luce model and
can reduce the training complexity from m-factorial to the polynomial
order of m.

4.2.2 ListMLE

Even if the top-k K–L divergence loss is used in ListNet, one still
cannot avoid its following limitation. When k is set to be large, the
time complexity of evaluating the K–L divergence loss is still very high.
However, when k is set to be small, information about the permutation
will be significantly lost and the effectiveness of the ListNet algorithm
is questionable [17].

To tackle these problems, a new algorithm named ListMLE was
proposed [129]. ListMLE is also based on the Luce model. For each
query q, with the permutation probability distribution defined with
the output of the scoring function, it uses the negative log likelihood of
the ground truth permutation as the listwise ranking loss. We denote
this new listwise ranking loss as the likelihood loss for short.

L(f ;x,πy) = − logP (πy |ϕ(f(w,x))). (4.13)

It is clear that in this way the training complexity can be greatly
reduced as compared to ListNet, since one only needs to compute the

276 The Listwise Approach

probability of a single permutation πy but not all the permutations.
Once again, one can use a neural network model to optimize the like-
lihood loss.

It should be noted that ListMLE has assumed the ground truth
labels to be given as the total order of the documents. This is an advan-
tage when it is really the case, however, if the judgments are given in
other terms, ListMLE will not work. To tackle this challenge and fur-
ther enhance the application scope of ListMLE, one needs to conduct
the following preprocessing of the training data.

Given the judgment in terms of relevance degree, one can define an
equivalent permutation set as follows:

Ωy =
{

πy |u < v, if lπ−1
y (u) � lπ−1

y (v)

}
.

Similarly, given the judgment in terms of pairwise preferences, one
can define Ωy as below:

Ωy =
{

πy |u < v, if lπ−1
y (u),π−1

y (v) = 1
}

.

As compared to the judgment in terms of total order, we can regard
the above judgments as incomplete. In other words, they are the neces-
sary conditions of being ground truth permutations. However, permuta-
tions satisfying these constraints might not always be the ground truth
permutations. This situation is very similar to that in multi-instance
learning. Therefore, one can define the loss function, following a similar
idea proposed for multi-instance learning [6], as below:

L(f ;x,Ωy) = min
πy∈Ωy

(− logP (πy |ϕ(f(w,x)))) . (4.14)

In [129], some analyses have been made on ListNet and ListMLE.
Basically, it has been proven that both the K–L divergence loss and the
likelihood loss are continuous, differentiable, and convex. In this way,
they can be easily optimized, e.g., using the gradient descent algorithm.

4.3 Discussions

As shown in this subsection, different kinds of listwise ranking algo-
rithms have been proposed. Intuitively speaking, they model the rank-
ing problem in a more natural way than the pointwise and pair-
wise approaches, and thus can address some problems that these two

4.3 Discussions 277

approaches have encountered. As we have discussed in the previous
sections, for the pointwise and pairwise approaches, the position infor-
mation is invisible to their loss functions, and they ignore the fact
that some documents (or document pairs) are associated with the same
query. Comparatively speaking, the listwise approach takes all the doc-
uments associated with the same query as the input and their ranked
list (or their relevance degrees) as the output. In this way, it has the
potential to distinguish documents from different queries, and to con-
sider the position information in the output ranked list in its learning
process. According to some previous studies, the performances of the
listwise ranking algorithms are really better than previous approaches
[129]. This is also verified by the discussions in Section 6, which is
about the empirical ranking performances of different learning-to-rank
algorithms, with the LETOR benchmark dataset as the experimental
platform.

On the other hand, the listwise approach also has certain aspects
that could be improved. For example, the training complexities of some
listwise ranking algorithms (e.g., ListNet) are high since the evaluation
of their loss functions are permutation based. A more efficient learning
algorithm is needed to make the listwise approach more practical. More-
over, we would like to point out that the use of the position information
in some listwise ranking algorithms is insufficient. For example, there
is no explicit position discount considered in the loss functions of List-
Net and ListMLE. As a result, even if the algorithms can see different
positions in the output ranked list, they have not fully utilized them in
the learning process. By introducing certain position discount factors,
the performance improvement of these algorithms can be expected.

5
Analysis of the Approaches

In the previous three sections, we have introduced the pointwise, pair-
wise, and listwise approaches to learning to rank. The major differences
between these approaches are the loss functions. Note that the loss
functions are mainly used to guide the learning process, while the eval-
uation of the learned ranking model is based on IR evaluation measures.
Therefore, an important issue to discuss is the relationship between the
loss functions used in these approaches and the IR evaluation measure.
This is exactly the motivation of this section. Without the loss of gen-
erality, we will take NDCG@m as an example in the discussions. Here
m is the total number of documents associated with the query. For
simplicity, we refer to NDCG@m as NDCG.

For ease of our discussion, we assume that the judgment is given
in terms of multiple ordered categories, and the ground truth label is
represented by a permutation set Ωy as defined in Equation (4.14)
(in other cases, one can obtain similar results). With this assump-
tion, NDCG with respect to a given ranked list π can be defined

278

5.1 The Pointwise Approach 279

as follows1:

NDCG(π,Ωy) =
1

Zm

m∑
t=1

G(π−1
y (t))η(π(π−1

y (t)), ∀πy ∈ Ωy. (5.1)

It is easy to verify that for ∀πy ∈ Ωy, the right-hand side of the
equation takes the same value. Sometimes, we need to emphasize the
ranking model, i.e., when π = sort ◦ f . In this case, we will denote
the above-defined NDCG as NDCG(f,x,Ωy).

5.1 The Pointwise Approach

As mentioned in Section 2, Cossock and Zhang [33] have established the
theoretical foundation for reducing ranking to regression.2 Given x =
{xj}m

j=1, a group of documents associated with training query q, and
the ground truth y = {yj}m

j=1 of these documents in terms of multiple
ordered categories, suppose a scoring function f is used to rank these
documents. The authors proved a theory showing that the ranking error
in terms of NDCG can be bounded by the following regression loss:

1 − NDCG(f,x,Ωy) ≤ 1
Zm

2
m∑

j=1

η(j)2

1
2
 m∑

j=1

(f(xj) − yj)2

1
2

, (5.2)

where Zm is the maximum DCG value and η(j) is the discount factor
used in NDCG.3

In other words, if one can really minimize the regression loss to zero,
one can also minimize (1 − NDCG) to zero. This seems to be a very
nice property of the regression based methods.

With similar proof techniques to those used in [33], Li et al. [78]
showed that (1 − NDCG) can also be bounded by the multi-class

1 Note that this definition of NDCG is equivalent to that given in Equation (1.9), although
the index of the summation changes from the rank position in π (i.e., r) to the position
in the ground truth list (i.e., t). Furthermore, we assume that the gain function G(·) can
access the original relevance degree of the document.

2 Note that the bounds given in the original papers are with respect to DCG, and here we
give their equivalent form in terms of NDCG for ease of comparison.

3 Note that the original bound was given with regards to DCG. Here we use its equivalent
form in terms of NDCG for ease of comparison.

280 Analysis of the Approaches

classification loss as shown below (it is assumed K = 5 in the
inequality).

1 − NDCG(f,x,Ωy)

≤ 15
Zm

√√√√√2

 m∑
j=1

η(j)2 − m

m∏
j=1

η(j)
2
m

 ·
√√√√ m∑

j=1

I{yj �=ŷj}, (5.3)

where ŷj is the prediction on the label of xj by the multi-class classifier,
and f(xj) =

∑K−1
k=0 k · P (ŷj = k).

In other words, if one can really minimize the classification loss to
zero, one can also minimize (1 − NDCG) to zero at the same time.

However, on the other hand, please note that when (1 − NDCG) is
zero (i.e., the documents are perfectly ranked), the regression loss and
the classification loss might not be zero (and can still be very large).
In other words, the minimization of the regression loss and the classifi-
cation loss is only a sufficient condition but not a necessary condition
for optimal ranking in terms of NDCG.

Let us have a close look at the classification bound in inequal-
ity (5.3) with an example.4 Note that a similar example has been given
in [1] to show the problem of reducing ranking to a binary classification
problem.

Suppose for a particular query q, we have four documents (i.e.,
m = 4) in total, and their ground truth labels are 4, 3, 2, and 1, respec-
tively (i.e., y1 = 4, y2 = 3, y3 = 2, y4 = 1). We use the same discount
factor and gain function as used in [78]. Then it is easy to compute
that Zm =

∑4
j=1

1
log(j+1)(2

yj−1) ≈ 21.35.
Then, suppose the outputs of the multi-class classifier are ŷ1 = 3,

ŷ2 = 2, ŷ3 = 1, and ŷ4 = 0, with 100% confidence in the prediction for
each document. It is easy to compute that 1 − NDCG(f,x,Ωy) is 0 and
we actually get a perfect ranking based on the classifier. However, in
terms of multi-class classification, we made errors in all the four docu-
ments, i.e.,

∑m
j=1 I{yj �=ŷj} = 4. Furthermore, if we compute the bound

4 One can get similar results for the regression bound given in inequality (5.2).

5.2 The Pairwise Approach 281

given by inequality (5.3), we obtain:

15
Zm

√√√√√2

 m∑
j=1

(
1

log(j + 1)

)2

− m

m∏
j=1

(
1

log(j + 1)

) 2
m

 ·
m∑

j=1

I{yj �=ŷj}

≈ 24.49
21.35

= 1.15.

It is clear the bound is meaningless since it is even larger than one.
Actually the loose bound is not difficult to understand. The left-hand
side of inequality (5.3) contains the position information, while the
right-hand side does not. When the same amount of classification loss
occurs in different positions, the ranking error will be quite different.
In order to make the inequality always hold, the price one has to pay
is that the bound must be very loose.

5.2 The Pairwise Approach

It has been shown in [22] that many of the pairwise loss functions
are upper bounds of a quantity, named the essential loss for ranking.
Furthermore, the essential loss is an upper bound of (1 − NDCG), and
therefore these loss functions are also upper bounds of (1 − NDCG).

To better illustrate this result, we first introduce the concept of the
essential loss, which is constructed by modeling ranking as a sequence
of classification tasks.

Given a group of documents x and their ground truth permuta-
tion πy ∈ Ωy, the ranking problem can be decomposed into several
sequential steps. For each step t, one tries to distinguish π−1

y (t), the
document ranked at the t-th position in πy, from all the documents
ranked below the t-th position in πy, using a scoring function f . Denote
x(t) = {xπ−1

y (t), . . . ,xπ−1
y (m)}. One can define a classifier based on f ,

whose target output is π−1
y (t):

T ◦ f(x(t)) = arg max
j=π−1

y (t),...,π−1
y (m)

f(xj). (5.4)

It is clear that there are m − t possible outputs of this classifier, i.e.,
{π−1

y (t), . . . ,π−1
y (m)}. The 0–1 loss for this classification task can be

282 Analysis of the Approaches

written as follows, where the second equation is based on the definition
of T ◦ f :

Lt(f ;x(t),π−1
y (t)) = I{T◦f(x(t)) �=π−1

y (t)}

= 1 −
m∏

j=t+1

I{f(π−1
y (t))>f(π−1

y (j))}. (5.5)

By summing up the losses at all the steps (t = 1, . . . ,m − 1), one
can obtain,

L̃(f ;x,πy) =
m−1∑
t=1

I{T◦f(x(t)) �=π−1
y (t)}. (5.6)

By further taking a minimization over the permutation set Ωy, we
will get the so-called essential loss:

L̃(f ;x,Ωy) = min
πy∈Ωy

m−1∑
t=1

I{T◦f(x(t)) �=π−1
y (t)}. (5.7)

It has been proven in [22] that the essential loss is an upper bound
of (1 − NDCG). As a result, the minimization of it will lead to the
effective maximization of NDCG:

1 − NDCG(f,x,Ωy) ≤ 2K−1 − 1
Zm

(
m−1∑
t=1

η(t)α

) 1
α(

L̃(f ;x,Ωy)
) 1

β , (5.8)

where 1
α + 1

β = 1.
As compared to the bounds given in the previous subsection, one

can see that the essential loss has a nicer property. When (1 − NDCG)
is zero, the essential loss is also zero. In other words, the zero value of
the essential loss is not only a sufficient condition but also a necessary
condition of the zero value of (1 − NDCG).

Furthermore, it has been proven in [22] that the essential loss has
the following property:

L̃(f ;x,Ωy) ≤ max
πy∈Ωy

a(T ◦ f(x(t)),π
−1
y (t)), (5.9)

where a(·, ·) is a cost sensitive function, i.e., a(i, j) = 0 if li = lj and
a(i, j) = 1 otherwise.

5.3 The Listwise Approach 283

Based on the above property, one can prove that the widely used
pairwise loss functions are upper bounds of the essential loss.

L̃(f ;x,Ωy) ≤
m−1∑
t=1

n∑
j=t+1,

l
π−1

y (t)
�=l

π−1
y (j)

φ
(
f(xπ−1

y (t)) − f(xπ−1
y (j))

)
,

∀πy ∈ Ωy, (5.10)

where when function φ is the hinge function, the exponential function,
and the logistic function, the right hand side of the inequality rep-
resents exactly the loss functions of Ranking SVM, RankBoost, and
RankNet.

Therefore, the minimization of the loss functions in the aforemen-
tioned pairwise ranking algorithms will all lead to the minimization
of the essential loss. Further, considering the relationship between the
essential loss and (1 − NDCG), these algorithms can also effectively
minimize (1 − NDCG).

5.3 The Listwise Approach

5.3.1 Listwise Ranking Loss

One sub-category of the listwise approach minimizes a listwise ranking
loss in the training process. Here, we take ListMLE as an example
to perform the discussion on this sub-category. Actually, the technique
used in the discussions on the pairwise loss functions can be used again.

Specifically, based on the essential loss, one can prove that the fol-
lowing inequality holds [22]:

L̃(f ;x,Ωy)

≤ 1
log2

· min
πy∈Ωy

m−1∑
t=1

f(xπ−1
y (t)) + log

 m∑
j=t

exp
(
f
(
xπ−1

y (j)

)) .

It is clear that the right hand side of the inequality contains the like-
lihood loss used in ListMLE (see Equation (4.14) when the exponential
function is used as the transformation function ϕ). Recalling the con-
nection between the essential loss and (1−NDCG) as discussed in the

284 Analysis of the Approaches

previous section, the likelihood loss can also upper bound (1−NDCG).
Therefore, the minimization of the likelihood loss in the training pro-
cess will lead to the minimization of (1−NDCG) [22].

5.3.2 Loss Functions in Direct Optimization Methods

The other sub-category of the listwise approach optimizes a loss
function derived from the IR evaluation measure. It seems that the
discussion on the relationship between such a loss function and the
corresponding IR evaluation measure is more straightforward, since
they have natural connections. However, in order to make a formal
discussion on the issue, a new quantity named “directness” needs to
be introduced [61]. Basically, directness indicates whether a surrogate
measure is a good approximation of the corresponding IR evaluation
measure. Note that in the following definition, we assume the use of a
linear scoring function, i.e., f(x) = wTx.

Definition 5.1. (Directness) For any query q, suppose its associated
documents and the ground truth are x and Ωy, respectively. For a
ranking model w, denote M̃(w,x,Ωy) and M(w,x,Ωy) as a surrogate
measure and its corresponding IR evaluation measure, respectively. The
directness of M̃ with respect to M is defined as:

D(w,M̃,M) =
1

supx,Ωy
|M(w,x,Ωy) − M̃(w,x,Ωy)|

. (5.11)

As can be seen, the directness is determined by the maximum dif-
ference between the surrogate measure and its corresponding IR evalu-
ation measure with respect to a ranking model w, over the entire input
and output spaces. In the extreme case, when the difference becomes
zero, the directness will become infinite, and the surrogate measure will
become exactly the IR evaluation measure.

As examples, the directness of SoftRank and SVMmap have been
analyzed in [61]. The corresponding result for SoftRank is listed in the
following theorem.

5.3 The Listwise Approach 285

Theorem 5.1. For query q, suppose its associated documents and
ground truth labels are x and Ωy, respectively. Assume ∀i and j,
|f(xi) − f(xj)| ≥ δ > 0 and ∀q,m ≤ M . If σs < δ

2erf−1
(√

5M−9
5M−5

) , then:

D(w,SoftNDCG,NDCG) ≥ 1
M · 2K−1 · (ε1 + ε2)

, (5.12)

where

ε1 =
(M − 1)σs

2δ
√

π
e
− δ2

4σ2
s , ε2 =

√
ε3(σs)

1 − 5ε3(σs)
+ 5ε3(σs),

ε3 =
M − 1

4

[
1 − erf2

(
δ

2σs

)]
, erf(x) =

2√
π

∫ x

0
e−t2dt,

and K is the number of relevance degrees in the judgment.

From the above theorem, we can see that the lower bound of the
directness of SoftNDCG is a decreasing function of σs. Furthermore,
when σs → 0, the directness of SoftNDCG becomes extremely large.
The intuitive explanation of this result is as follows. When the variance
of the score distribution is small enough,5 it is highly probable that
the introduction of the score distribution will not change the original
order of any two documents. Therefore, the value of SoftNDCG can
be very close to that of NDCG, even if it has become continuous and
differentiable.

Similar analysis on SVMndcg [20], however, shows that for any rank-
ing model, there always exists such inputs and outputs that will result
in the large difference between its surrogate measure and the corre-
sponding IR evaluation measure [61]. Consequently, it is not guaran-
teed that these algorithms can lead to the effective optimization of the
IR evaluation measures.6

5 Since σs is a pre-defined parameter in the SoftRank algorithm, we are able to make
SoftRank as direct as desired by setting σs as small as possible regardless of the joint
probability distribution of the inputs and outputs.

6 Note that the same conclusion also applies to SVMmap and PermuRank [132].

286 Analysis of the Approaches

5.4 Discussions

In this subsection, we have reviewed the relationships between differ-
ent loss functions in learning to rank and the IR evaluation measure.
The discussions well explain why different learning-to-rank algorithms
perform reasonably well in practice (see the Experimental Results in
Section 6).

While the analyses introduced in this section look quite nice, there
are still several issues that have not been adequately solved. First,
although the essential loss can be used to explain the relationship
between (1 − NDCG) and the loss functions in the pairwise and list-
wise approaches, it is not clear whether it can also be used to explain
the pointwise approach. If it is the case, the essential loss will become
really “essential”. Second, from the ML point of view, being an upper
bound of the evaluation measure might not be sufficient for a good
loss function. The reason is that what we really care about is the opti-
mal solution with regards to the loss function. Even if a loss can be
the upper bound of (1 − NDCG) everywhere, its optimum might not
correspond to the optimum of (1 − NDCG).

The discussions on the “directness” is one step toward solving this
problem. A more principled solution should be obtained by investi-
gating the so-called “consistency” of the loss functions, which exactly
describes whether the optima with regards to the loss function and
the measure can be the same. The consistency of learning methods has
been well studied in classification, but not yet for ranking (see Discus-
sions in Section 7). This should be important future work on learning
to rank, from the theoretical point of view.

6
Benchmarking Learning-to-Rank Algorithms

In this section, we introduce a benchmark dataset for learning to
rank and investigate the empirical performances of some representa-
tive learning-to-rank algorithms on the dataset.

As we know, a standard dataset with standard features and eval-
uation measures is very helpful for the research on ML. For example,
there are benchmark datasets such as Reuters1 and RCV-12 for text
classification, and UCI3 for general ML. However, there were no such
benchmark datasets for ranking until the LETOR collection [79] was
released in early 2007. In recent years, the LETOR collection has been
widely used in the experiments of learning-to-rank papers, and has
helped to greatly move forward the research on learning to rank.

6.1 The LETOR Collection

In this subsection, we introduce the LETOR collection, including
five aspects: document corpora (together with query sets), document
sampling, feature extraction, meta information, and cross validation.

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/
2 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004 rcv1v2 README.htm.
3 http://archive.ics.uci.edu/ml/

287

288 Benchmarking Learning-to-Rank Algorithms

6.1.1 Document Corpora

Two document corpora together with seven query sets were used in the
LETOR collection.

6.1.1.1 The “Gov” corpus and six query sets

In TREC 2003 and 2004, a special track for Web IR, named the Web
track,4 was organized. The track used the “Gov” corpus, which is based
on a January, 2002 crawl of the “Gov” domain. There are in total
1,053,110 html documents in this corpus.

Three search tasks were designed in the Web track: topic distillation
(TD), homepage finding (HP), and named page finding (NP). TD aims
to find a list of entry points for good websites principally devoted to
the topic. HP aims at returning the homepage of the query. NP aims to
return the page whose name is exactly identical to the query. Generally
speaking, there is only one answer for HP and NP. The numbers of
queries in these three tasks are shown in Table 6.1.

Due to the large scale of the corpus, it is not feasible to check every
document and judge whether it is relevant to a given query. Therefore,
the pooling strategy as introduced in Section 1 was used [35].

Many research papers [97, 101, 131, 133] have been published using
the three tasks on the “Gov” corpus as their experimental platform.

6.1.1.2 The OHSUMED corpus

The OHSUMED corpus [64] is a subset of MEDLINE, a database
on medical publications. It consists of 348,566 records (out of over
7 million) from 270 medical journals during the years of 1987–1991.

Table 6.1 Number of queries in TREC web track.

Task TREC2003 TREC2004
Topic distillation 50 75
Homepage finding 150 75
Named page finding 150 75

4 http://trec.nist.gov/tracks.html.

6.1 The LETOR Collection 289

The fields of a record include title, abstract, MeSH indexing terms,
author, source, and publication type.

A query set with 106 queries on the OHSUMED corpus was used
in much previous work [97, 131], with each query describing a medi-
cal search need (associated with patient information and topic infor-
mation). The relevance degrees of the documents with respect to the
queries are judged by humans, on three levels: definitely relevant,
partially relevant, and irrelevant. There are a total of 16,140 query–
document pairs with relevance judgments.

6.1.2 Documents Sampling

It is not feasible to extract feature vectors of all the documents in the
corpora, due to a reason similar to selecting documents for labeling. A
reasonable strategy is to sample some “possibly” relevant documents,
and then extract feature vectors for the corresponding query-document
pairs.

For the “Gov” corpus, following the suggestions in [88] and [100],
the documents were sampled in the following way. First, the BM25
model was used to rank all the documents with respect to each query,
and then the top 1000 documents for each query were selected for
feature extraction. Please note that this sampling strategy is to ease the
experimental investigation, and it is by no means to say that learning
to rank can only be applicable in such a re-ranking scenario.

Different from the “Gov” corpus where unjudged documents are
regarded as irrelevant, in OHSUMED, the judgments explicitly contain
the category of “irrelevant” and the unjudged documents are ignored
in the evaluation [64]. Following this practice, in LETOR, only judged
documents were used for feature extraction in OHSUMED and all the
unjudged documents were ignored. On average, a query has about 152
documents sampled for feature extraction.

6.1.3 Features Extraction

In this subsection, we introduce the feature representation of each doc-
ument in LETOR.

290 Benchmarking Learning-to-Rank Algorithms

For the “Gov” corpus, 64 features were extracted for each query–
document pair, as shown in Table 6.2.

For the OHSUMED corpus, 40 features were extracted in total, as
shown in Table 6.3.

Table 6.2 Learning features of TREC.

ID Feature description
1 Term frequency (TF) of body
2 TF of anchor
3 TF of title
4 TF of URL
5 TF of whole document
6 Inverse document frequency (IDF) of body
7 IDF of anchor
8 IDF of title
9 IDF of URL

10 IDF of whole document
11 TF*IDF of body
12 TF*IDF of anchor
13 TF*IDF of title
14 TF*IDF of URL
15 TF*IDF of whole document
16 Document length (DL) of body
17 DL of anchor
18 DL of title
19 DL of URL
20 DL of whole document
21 BM25 of body
22 BM25 of anchor
23 BM25 of title
24 BM25 of URL
25 BM25 of whole document
26 LMIR.ABS of body
27 LMIR.ABS of anchor
28 LMIR.ABS of title
29 LMIR.ABS of URL
30 LMIR.ABS of whole document
31 LMIR.DIR of body
32 LMIR.DIR of anchor
33 LMIR.DIR of title
34 LMIR.DIR of URL
35 LMIR.DIR of whole document
36 LMIR.JM of body
37 LMIR.JM of anchor
38 LMIR.JM of title
39 LMIR.JM of URL

(Continued)

6.1 The LETOR Collection 291

Table 6.2 (Continued)

ID Feature description
40 LMIR.JM of whole document
41 Sitemap based term propagation
42 Sitemap based score propagation
43 Hyperlink base score propagation: weighted in-link
44 Hyperlink base score propagation: weighted out-link
45 Hyperlink base score propagation: uniform out-link
46 Hyperlink base feature propagation: weighted in-link
47 Hyperlink base feature propagation: weighted out-link
48 Hyperlink base feature propagation: uniform out-link
49 HITS authority
50 HITS hub
51 PageRank
52 HostRank
53 Topical PageRank
54 Topical HITS authority
55 Topical HITS hub
56 Inlink number
57 Outlink number
58 Number of slash in URL
59 Length of URL
60 Number of child page
61 BM25 of extracted title
62 LMIR.ABS of extracted title
63 LMIR.DIR of extracted title
64 LMIR.JM of extracted title

Table 6.3 Learning features of OHSUMED.

ID Feature description
1

∑
qi∈q∩d TF(qi,d) in title

2
∑

qi∈q∩d log (TF(qi,d) + 1) in title

3
∑

qi∈q∩d
TF(qi,d)
LEN(d) in title

4
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) + 1

)
in title

5
∑

qi∈q∩d log (IDF(qi)) in title

6
∑

qi∈q∩d log (log(IDF(qi))) in title

7
∑

qi∈q∩d log
(

N
TF(qi,C) + 1

)
in title

8
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) · log (IDF(qi)) + 1

)
in title

9
∑

qi∈q∩d TF(qi,d) · log (IDF(qi)) in title

10
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) · N

TF (qi,C) + 1
)

in title

11 BM25 of title
12 log(BM25) of title

(Continued)

292 Benchmarking Learning-to-Rank Algorithms

Table 6.3 (Continued)

ID Feature description
13 LMIR.DIR of title
14 LMIR.JM of title
15 LMIR.ABS of title
16

∑
qi∈q∩d TF(qi,d) in abstract

17
∑

qi∈q∩d log (TF(qi,d) + 1) in abstract

18
∑

qi∈q∩d
TF(qi,d)
LEN(d) in abstract

19
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) + 1

)
in abstract

20
∑

qi∈q∩d log (IDF(qi)) in abstract

21
∑

qi∈q∩d log (log(IDF(qi))) in abstract

22
∑

qi∈q∩d log
(

N
TF(qi,C) + 1

)
in abstract

23
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) · log (IDF(qi)) + 1

)
in abstract

24
∑

qi∈q∩d TF(qi,d) · log (IDF(qi)) in abstract

25
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) · N

TF(qi,C) + 1
)

in abstract

26 BM25 of abstract
27 log(BM25) of abstract
28 LMIR.DIR of abstract
29 LMIR.JM of abstract
30 LMIR.ABS of abstract
31

∑
qi∈q∩d TF(qi,d) in title + abstract

32
∑

qi∈q∩d log (TF(qi,d) + 1) in title + abstract

33
∑

qi∈q∩d
TF(qi,d)
LEN(d) in title + abstract

34
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) + 1

)
in title + abstract

35
∑

qi∈q∩d log (IDF(qi)) in title + abstract

36
∑

qi∈q∩d log (log(IDF(qi))) in title + abstract

37
∑

qi∈q∩d log
(

N
TF(qi,C) + 1

)
in title + abstract

38
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) · log (IDF(qi)) + 1

)
in title + abstract

39
∑

qi∈q∩d TF(qi,d) · log (IDF(qi)) in title + abstract

40
∑

qi∈q∩d log
(

TF(qi,d)
LEN(d) · N

TF(qi,C) + 1
)

in title + abstract

41 BM25 of title + abstract
42 log(BM25) of title + abstract
43 LMIR.DIR of title + abstract
44 LMIR.JM of title + abstract
45 LMIR.ABS of title + abstract

6.1.4 Meta Information

In addition to the features, meta information that can be used to repro-
duce these features and even other new features has also been provided

6.1 The LETOR Collection 293

in LETOR. There are three kinds of meta information:

• Statistical information about the corpus, such as the total
number of documents, the number of streams, and the num-
ber of (unique) terms in each stream.

• Raw information on the documents associated with each
query, such as the term frequency and the document length.

• Relational information, such as the hyperlink graph, the
sitemap information, and the similarity relationship matrix
of the corpus.

With the meta information, one can reproduce existing features,
tune their parameters, investigate new features, and perform advanced
research such as relational ranking [103, 104].

6.1.5 Cross Validation

In total, there are seven datasets in the LETOR collection, i.e., TD2003,
TD2004, NP2003, NP2004, HP2003, HP2004, and OHSUMED. Each
of these datasets was partitioned into five parts with about the
same number of queries, denoted as S1, S2, S3, S4, and S5, in order
to conduct five-fold cross validation. For each fold, three parts are
used for training the ranking model, one part for tuning the hyper
parameters of the ranking algorithm (e.g., the number of iterations in
RankBoost, and the combination coefficient in the objective function
of Ranking SVM), and the remaining part to evaluate the ranking
performance of the learned model (see Table 6.4). The average perfor-
mance over the five folds is used to measure the overall performance
of a learning-to-rank algorithm.

Table 6.4 Data partitioning for five-fold cross validation.

Folds Training set Validation set Test set
Fold1 {S1,S2,S3} S4 S5
Fold2 {S2,S3,S4} S5 S1
Fold3 {S3,S4,S5} S1 S2
Fold4 {S4,S5,S1} S2 S3
Fold5 {S5,S1,S2} S3 S4

294 Benchmarking Learning-to-Rank Algorithms

The LETOR collection, containing the aforementioned feature
representations of documents, their relevance judgments with respec-
tive queries, and the partitioned training, validation, and test sets can
be downloaded from http://research.microsoft.com/˜LETOR/.5

6.2 Experimental Results on LETOR

In this subsection, we introduce the experiments on LETOR to eval-
uate several representative learning-to-rank algorithms, and make dis-
cussions on the experimental results.6 Three widely used measures are
adopted for the evaluation: precision at position k (P@k) [8], MAP
[8], and NDCG at position k (N@k) [66]. The official evaluation tool
provided with LETOR was used in the evaluation process.

We have evaluated seven representative learning-to-rank algo-
rithms in total. For the pointwise approach, we tested the regression
based method. For the pairwise approach, we tested Ranking SVM,
RankBoost, and FRank. For the listwise approach, we tested ListNet,
AdaRank, and SVMmap. To make fair comparisons, we tried to use the
same setting for all the algorithms. Firstly, most algorithms use the
linear ranking function, except RankBoost, which uses binary weak
rankers. Secondly, all the algorithms used MAP on the validation set
for model selection. Some detailed experimental settings are listed as
follows.

As for the linear regression based algorithm, the validation set was
used to select a good mapping from the ground truth labels to real num-
bers. For Ranking SVM, the public tool of SVMlight7 was employed
and the validation set was used to tune the parameter C in its loss
function. For RankBoost, the weak ranker was defined on the basis of a
single feature with 255 possible thresholds. The validation set was used
to determine the best number of iterations. For FRank, to efficiently
minimize the fidelity loss, a generalized additive model was adopted.
The validation set was used to determine the number of weak learners
in the additive model. For ListNet, the validation set was used to deter-

5 Note that the LETOR collection is being frequently updated. It is expected that more
datasets will be added in the future.

6 These results are also published at the website of LETOR.
7 http://svmlight.joachims.org/.

6.2 Experimental Results on LETOR 295

mine the best mapping from the ground truth label to real numbers in
order to use the Luce model, and to determine the optimal number of
iterations in the gradient descent process. For AdaRank, MAP was set
as the IR evaluation measure to be optimized, and the validation set
was used to determine the number of iterations. For SVMmap [136], the
publicly available tool SVMmap was employed,8 and the validation set
was used to determine the parameter C in its loss function.

The ranking performances of the aforementioned algorithms are
listed in Tables 6.5–6.11. According to these experimental results,
we find that listwise ranking algorithms perform very well on most
datasets. Among the three listwise ranking algorithms, ListNet seems

Table 6.5 Results on TD2003.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 0.320 0.307 0.326 0.320 0.260 0.178 0.241
RankSVM 0.320 0.344 0.346 0.320 0.293 0.188 0.263
RankBoost 0.280 0.325 0.312 0.280 0.280 0.170 0.227
FRank 0.300 0.267 0.269 0.300 0.233 0.152 0.203
ListNet 0.400 0.337 0.348 0.400 0.293 0.200 0.275
AdaRank 0.260 0.307 0.306 0.260 0.260 0.158 0.228
SVMmap 0.320 0.320 0.328 0.320 0.253 0.170 0.245

Table 6.6 Results on TD2004.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 0.360 0.335 0.303 0.360 0.333 0.249 0.208
RankSVM 0.413 0.347 0.307 0.413 0.347 0.252 0.224
RankBoost 0.507 0.430 0.350 0.507 0.427 0.275 0.261
FRank 0.493 0.388 0.333 0.493 0.378 0.262 0.239
ListNet 0.360 0.357 0.317 0.360 0.360 0.256 0.223
AdaRank 0.413 0.376 0.328 0.413 0.369 0.249 0.219
SVMmap 0.293 0.304 0.291 0.293 0.302 0.247 0.205

Table 6.7 Results on NP2003.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 0.447 0.614 0.665 0.447 0.220 0.081 0.564
RankSVM 0.580 0.765 0.800 0.580 0.271 0.092 0.696
RankBoost 0.600 0.764 0.807 0.600 0.269 0.094 0.707
FRank 0.540 0.726 0.776 0.540 0.253 0.090 0.664
ListNet 0.567 0.758 0.801 0.567 0.267 0.092 0.690
AdaRank 0.580 0.729 0.764 0.580 0.251 0.086 0.678
SVMmap 0.560 0.767 0.798 0.560 0.269 0.089 0.687

8 http://svmrank.yisongyue.com/svmmap.php

296 Benchmarking Learning-to-Rank Algorithms

Table 6.8 Results on NP2004.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 0.373 0.555 0.653 0.373 0.200 0.082 0.514
RankSVM 0.507 0.750 0.806 0.507 0.262 0.093 0.659
RankBoost 0.427 0.627 0.691 0.427 0.231 0.088 0.564
FRank 0.480 0.643 0.729 0.480 0.236 0.093 0.601
ListNet 0.533 0.759 0.812 0.533 0.267 0.094 0.672
AdaRank 0.480 0.698 0.749 0.480 0.244 0.088 0.622
SVMmap 0.520 0.749 0.808 0.520 0.267 0.096 0.662

Table 6.9 Results on HP2003.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 0.420 0.510 0.594 0.420 0.211 0.088 0.497
RankSVM 0.693 0.775 0.807 0.693 0.309 0.104 0.741
RankBoost 0.667 0.792 0.817 0.667 0.311 0.105 0.733
FRank 0.653 0.743 0.797 0.653 0.289 0.106 0.710
ListNet 0.720 0.813 0.837 0.720 0.320 0.106 0.766
AdaRank 0.733 0.805 0.838 0.733 0.309 0.106 0.771
SVMmap 0.713 0.779 0.799 0.713 0.309 0.100 0.742

Table 6.10 Results on HP2004.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 0.387 0.575 0.646 0.387 0.213 0.08 0.526
RankSVM 0.573 0.715 0.768 0.573 0.267 0.096 0.668
RankBoost 0.507 0.699 0.743 0.507 0.253 0.092 0.625
FRank 0.600 0.729 0.761 0.600 0.262 0.089 0.682
ListNet 0.600 0.721 0.784 0.600 0.271 0.098 0.690
AdaRank 0.613 0.816 0.832 0.613 0.298 0.094 0.722
SVMmap 0.627 0.754 0.806 0.627 0.280 0.096 0.718

Table 6.11 Results on OHSUMED.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 0.446 0.443 0.411 0.597 0.577 0.466 0.422
RankSVM 0.496 0.421 0.414 0.597 0.543 0.486 0.433
RankBoost 0.463 0.456 0.430 0.558 0.561 0.497 0.441
FRank 0.530 0.481 0.443 0.643 0.593 0.501 0.444
ListNet 0.533 0.473 0.441 0.652 0.602 0.497 0.446
AdaRank 0.539 0.468 0.442 0.634 0.590 0.497 0.449
SVMmap 0.523 0.466 0.432 0.643 0.580 0.491 0.445

to be better than the others. AdaRank and SVMmap obtain similar per-
formances. Pairwise ranking algorithms obtain good ranking accuracy
on some (although not all) datasets. For example, RankBoost offers the
best performance on TD2004 and NP2003; Ranking SVM shows very

6.2 Experimental Results on LETOR 297

promising results on NP2003 and NP2004; and FRank achieves very
good results on TD2004 and NP2004. Comparatively speaking, simple
linear regression performs worse than the pairwise and listwise ranking
algorithms. Its performance is not so good on most datasets.

We have also observed that most ranking algorithms perform dif-
ferently on different datasets. They may perform very well on some
datasets but not so well on other datasets. To evaluate the overall
ranking performances of an algorithm, we use the number of other algo-
rithms that it can beat over all the seven datasets as a measure. That is:

Si(M) =
7∑

j=1

7∑
k=1

I{Mi(j)>Mk(j)},

where j is the index of a dataset, i and k are the indexes of algorithms,
Mi(j) is the performance of i-th algorithm on j-th dataset, and I{·} is
the indicator function.

It is clear that the larger the Si(M), the better the i-th algorithm
performs. For ease of reference, we call this measure the winning num-
ber. Table 6.12 shows the winning number for all the algorithms under
investigation. From this table, we make the following observations:

(1) In terms of NDCG@1, the listwise ranking algorithms per-
form the best, followed by the pairwise ranking algorithms,
while the pointwise algorithm performs the worst. Among
the three listwise ranking algorithms, ListNet is better
than AdaRank, while SVMmap performs a little worse than
the others. The three pairwise ranking algorithms achieve
comparable results, among which Ranking SVM seems to be
slightly better than the other two.

Table 6.12 Winning number of each algorithm.

Algorithm N@1 N@3 N@10 P@1 P@3 P@10 MAP
Regression 4 4 4 5 5 5 4
RankSVM 21 22 22 21 22 22 24
RankBoost 18 22 22 17 22 23 19
FRank 18 19 18 18 17 23 15
ListNet 29 31 33 30 32 35 33
AdaRank 26 25 26 23 22 16 27
SVMmap 23 24 22 25 20 17 25

298 Benchmarking Learning-to-Rank Algorithms

(2) In terms of NDCG@3 and NDCG@10, ListNet and AdaRank
perform much better than the pairwise and pointwise ranking
algorithms, while the performance of SVMmap is very similar
to the pairwise ranking algorithms.

(3) In terms of P@1 and P@3, the listwise ranking algorithms
perform the best, followed by the pairwise ranking algo-
rithms, while the pointwise ranking algorithm performs the
worst. Among the three listwise ranking algorithms, ListNet
is better than AdaRank and SVMmap. The three pairwise
ranking algorithms achieve comparable results, among which
Ranking SVM seems to be slightly better than the other two
algorithms.

(4) In terms of P@10, ListNet performs much better than the
pairwise and pointwise ranking algorithms, while the perfor-
mances of AdaRank and SVMmap are not as good as those
of the pairwise ranking algorithms.

(5) In terms of MAP, the listwise ranking algorithms are in
general better than the pairwise ranking algorithms. Fur-
thermore, the variance among the three pairwise ranking
algorithms in terms of MAP is much larger than the vari-
ance among the three algorithms in terms of other measures
(e.g., P@1,3, and 10). The possible explanation is that since
MAP involves all the documents associated with a query in
the evaluation process, it can better differentiate algorithms.

To summarize, the experimental results show that the listwise algo-
rithms have certain advantages over other algorithms, especially for top
positions of the ranking result.

Here, we would like to point out that the above experimental results
are still primal, since the result of almost every algorithm can be further
improved. For example, for regression, we can add a regularization item
to make it more robust; for Ranking SVM, we can run more steps of the
iteration so as to guarantee a better convergence of the optimization;
for ListNet, we can also add a regularization item to its loss function
and make it more generalizable to the test set.

7
Statistical Ranking Theory

As a new ML problem, ranking is not only about effective algorithms
but also about the theory behind these algorithms. In this section, we
will introduce the so-called statistical ranking theory [75, 76], and will
focus on the generalization analysis of learning-to-rank methods.

Actually, theoretical analysis on an algorithm always plays an
important role in ML. This is because in practice, one can only observe
experimental results on small-scale datasets (e.g., the experimental
results on the LETOR collection as introduced in Section 6). To some
extent, such empirical results might not be fully trustworthy, because
a small training set sometimes cannot fully realize the potential of a
learning algorithm, and a small test set sometimes cannot reflect the
true performance of an algorithm (the input and output spaces are too
large to be well represented by a small number of samples). In this
regard, theories are solely needed in order to analyze the performance
of a learning algorithm when the training data is infinite and the test
data is perfectly sampled from the input and output spaces.

For example, the generalization analysis on an algorithm is con-
cerned with whether and at what rate its empirical risk computed from
the training data will converge to the expected risk on any test data

299

300 Statistical Ranking Theory

in the input and output spaces, when the number of training samples
approaches infinity. Sometimes, we alternatively represent the general-
ization ability of an algorithm using the bound of the difference between
its expected risk and empirical risk, and see whether and at what rate
the bound will converge to zero when the number of training samples
approaches infinity. In the context of learning to rank, the expected
risk measures the average error that a ranking model would make on
a randomly sampled input instance (document, document pairs, or all
documents associated with a query), while the empirical risk is an esti-
mate of the expected risk based on the training data. In general, an
algorithm is regarded as better than the other algorithm if its empiri-
cal risk can converge to the expected risk but that of the other cannot.
Furthermore, an algorithm is regarded as better than the other if its
corresponding convergence rate is faster than that of the other.

To facilitate the discussions on (but not limited to) the generaliza-
tion ability, a theoretical framework is needed. We will first review some
conventional generalization analyses on ranking and their correspond-
ing theoretical frameworks. After that, a recently-proposed query-level
ranking framework and its use in analyzing the generalization ability
of ranking methods will be introduced.

Note that it is unavoidable that a lot of mathematics will be used
in this section. It is safe, however, to skip this whole section, if one only
wants to know the algorithmic development of learning to rank.

7.1 Conventional Generalization Analyses on Ranking

Most of the conventional generalization analyses on ranking are for
the pairwise approach of learning to rank. The theoretical framework
behind these analyses is given in the following subsection.

7.1.1 Theoretical Framework for Pairwise Ranking

The basic assumption in the theoretical framework is that the docu-
ments and their relevance degrees are i.i.d. random variables. In this
case, the document pairs, as random variables, are not independent of
each other. To handle the challenge, U -statistics is used as the tool to
perform generalization analysis.

7.1 Conventional Generalization Analyses on Ranking 301

Assume that (xu,yu) and (xv,yv) are i.i.d. random variables accord-
ing to distribution PXY , where x stands for the document and y stands
for the ground truth label of the document. (xu,yu) and (xv,yv) con-
struct a pair. Given the scoring function f , loss comes up if the docu-
ments are not ranked according to their ground truth labels. Suppose
the loss function is L(f,xu,xv,yu,v), where yu,v = 2 · I{yu�yv} − 1. Then
the expected risk for ranking is defined as:

R(f) =
∫

(X×Y)2
L(f,xu,xv,yu,v)PXY (dxu,dyu)PXY (dxv,dyv). (7.1)

Intuitively, the expected risk means the average loss that a ranking
model f would make for a random document pair. Since it is almost
impossible to compute the expected risk, in practice, the empirical
risk on the training set is used as an estimate of the expected risk. In
particular, given the training data {(xj ,yj)}m

j=1, the empirical risk can
be defined with the following U -statistics:

R̂(f) =
1

C2
m

m∑
u=1

m∑
v=u+1

L(f,xu,xv,yu,v), (7.2)

where C2
m = m(m − 1)/2.

Specifically, when the ground truth is given as a binary relevance
degree, the relevant (positive) document is denoted as x+ according to
P+ and the irrelevant (negative) document is denoted as x− accord-
ing to P−. Given the training data x+ = {x+

j }m+

j=1
and x− = {x−

j }m−

j=1
(where m+ and m− are the numbers of positive and negative documents
in the training data, respectively), the expected risk and the empirical
risk are refined as follows:

R(f) =
∫

X 2
L(f,x+,x−)P+(dx+)P−(dx−), (7.3)

R̂(f) =
1

m+m−

m+∑
u=1

m−∑
v=1

L(f,x+,x−). (7.4)

7.1.2 Generalization Analysis on the Pairwise Approach

With the above theoretical framework, several tools have been used to
conduct generalization analyses for the pairwise approach of learning to

302 Statistical Ranking Theory

rank. Here we give three examples. The VC dimension and rank shatter
coefficient measure the complexity of the function class, while stabil-
ity measures the robustness of a ranking algorithm. Basically, simpler
ranking models generalize better, and more robust ranking algorithms
generalize better.

Based on the VC dimension: In [47], the VC dimension [125, 126]
is used to obtain the generalization bound for RankBoost. It is clear
that the bound converges to zero at a rate of O(max{√log(m+)/m+,√

log(m−)/m−}).

Theorem 7.1. Assume that all the weak learners belong to the func-
tion class F ′, which has a finite VC dimension V , the scoring function
belongs to function class F . Let S+ and S− be positive and negative
samples of size m+ and m−, respectively. Then with probability at least
1 − δ, the following inequality holds:

∀f ∈ F , |R(f) − R̂(f)|

≤ 2

√
V ′(log 2m+

V ′ + 1
)

+ log 18
δ

m+ + 2

√
V ′(log 2m−

V ′ + 1
)

+ log 18
δ

m− ,

(7.5)

where V ′ = 2(V + 1)(T + 1)log2(e(T + 1)) and T is the number of
weak rankers in RankBoost.

The above theorem is only applicable to the bipartite case.
Clemencon et al. [27] proposed another theorem using the properties
of U -Statistics, which can handle the general case.

Based on the rank shatter coefficient : The notion of bipartite rank-
shatter coefficient, denoted as r(F ,m+,m−), was proposed by Agarwal
et al. [1]. Here F is the class of scoring functions, m+ is the number of
positive documents and m− is the number of negative documents. This
new notion has a similar meaning to the shattering coefficient (growth
function) in the VC theory [125, 126].

Using the bipartite rank-shatter coefficient as a tool, the follow-
ing generalization theorem has been proven. As shown in [1], for

7.1 Conventional Generalization Analyses on Ranking 303

the class of linear ranking functions in the one-dimensional feature
space, r(F ,m+,m−) is a constant, regardless of the values of m+

and m−. In this case, the bound converges to zero at a rate of
O(max{1/

√
m+,1/

√
m−}), and is therefore tighter than the bound

for RankBoost given in inequality (7.5). For the class of linear rank-
ing functions in the d-dimensional feature space (d > 1), r(F ,m+,m−)
is of the order O((m+m−)d), and in this case the bound has a
similar convergence rate to that based on the VC dimension, i.e.,
O(max{√log(m+)/m+,

√
log(m−)/m−}).

Theorem 7.2. Let F be the class of real-valued functions on X , then
∀0 < δ < 1, with probability at least 1 − δ,

∀f ∈ F , |R(f) − R̂(f)|

≤
√

8(m+ + m−)
(
log 4

δ + logr(F ,2m+,2m−)
)

m+m− . (7.6)

Furthermore, Rajaram and Agarwal [108] generalized the above the-
ory to the k-partite case using the k-partite rank-shatter coefficient.

Based on the stability theory : Agarwal and Niyogi [2] used stability as
a tool and derived the generalization bound for some bipartite ranking
algorithms.

Let A be a ranking algorithm, and let L be the loss function that is
minimized in A. Suppose we have learned a ranking model f1 from the
training data using algorithm A. Then we replace a positive training
document with another document and learn a new model f2 from the
new training data. Similarly, we replace a negative training document
with another document and learn a new model f3. We say that A has
uniform loss stability (α,β) with respect to L, if the difference between
the losses with respect to f1 and f2 on any unseen document pair
(x+,x−) is smaller than α(m+,m−), and that with respect to f1 and
f3 is smaller than β(m+,m−). In other words, if the model learned from
the training data is robust to the small change in the training data, the
algorithm is regarded as having certain stability.

The generalization bound they obtained is as shown in Theo-
rem 7.3. As shown in [12], for many algorithms, α(m+,m−) and

304 Statistical Ranking Theory

β(m+,m−) are of the order O(1
m+) and O(1

m−), respectively. There-
fore, the bound given in Theorem 7.3 will converge to zero at a rate
of O(max{1/

√
m+,1/

√
m−}). In this regard, this bound is tighter

than the bound based on the Rank Shatter Coefficient (see Inequal-
ity (7.6)) except for the case of using linear ranking functions in the
one-dimensional feature space. This is understandable since the use
of stability can lead to a data-dependent bound [12], which is usually
tighter than data-independent bounds.

Theorem 7.3. Let L be the loss function with L(f ;x+,x−) ∈ [0,B],
and A have uniform loss stability (α,β). Then ∀0 < δ < 1, with
probability at least 1 − δ, the following inequality holds:

RL(fS+,S−)

≤ R̂L(fS+,S−) + α(m+,m−) + β(m+,m−)

+

√
{m−(2m+α(m+,m−) + B)2 + m+(2m−β(m+,m−) + B)2} log 1

δ

2m+m− .

(7.7)

Due to the basic assumption of the theoretical framework, the afore-
mentioned theorems can only be used when the ground truth labels are
given as relevance degrees of all the documents. However, as we men-
tioned before, the ground truth labels can also be given in terms of the
pairwise preference and even total order of the documents. In this case,
a new framework needs to be developed.

When the ground truth is given as a pairwise preference, it is more
reasonable to assume document pairs and their ground truth labels
are i.i.d. random variables. In this way, ranking is actually formalized
as a standard classification problem on document pairs. By using the
theoretical results of classification, one can also get a generalization
bound. For ease of reference, we refer to this way as taking the “average
view” on the generalization analysis, and refer to the work introduced in
this subsection as taking the “U -statistics view” on the generalization
analysis.

7.2 A Query-level Ranking Framework 305

Note that the “average view” is also technically sound. The intu-
ition is not right that two document pairs cannot be independent of
each other when they share a common document. The reason is that the
dependence (or independence) is actually defined with regards to ran-
dom variables but not their values. Therefore, as long as two document
pairs are sampled and labeled in an independent manner, they are i.i.d.
random variables no matter whether their values (the specific docu-
ments in the pair) have overlap or not. More discussions about the aver-
age view and the U -statistics view will be given in the next subsection.

7.2 A Query-level Ranking Framework

In [76], Lan et al. pointed out the limitation of the aforementioned
generalization analyses, from the IR perspective.

As we know, the generalization ability is concerned with the differ-
ence between the empirical risk and the expected risk of learning, and
these risks are highly related to how one evaluates the performance of
a learning algorithm. As mentioned earlier in the tutorial, all the IR
evaluation measures are defined at the query level. Therefore, the defi-
nition of the risks in ranking and the generalization analysis for ranking
should also be at the query level.

In contrast, the previous generalization analyses are either per-
formed at the document level or at the document pair level. There-
fore, Lan et al. argued that a novel theoretical framework needs to
be developed for learning to rank, to facilitate (but not limited to)
the query-level generalization analysis. They call such a framework the
query-level ranking framework.

Let Q be the query space, D be the document space, and X be the
d-dimensional space containing a feature representation of each docu-
ment. Let q be a random variable defined on the query space with an
unknown probability distribution PQ. Denote f as the scoring function,
and use a loss function L(f ;q) to measure the loss for each query. Then
the goal of ranking is to minimize the following expected query-level
risk:

R(f) =
∫

Q
L(f ;q)PQ(dq). (7.7)

306 Statistical Ranking Theory

Intuitively, the expected query-level risk means the average loss that
the ranking model f would make on a randomly sampled query. Since
the distribution PQ is unknown, the following empirical query-level risk
on the training set is used as the estimate of the expected query-level
risk,

R̂(f) =
1
n

n∑
i=1

L(f ;qi), (7.8)

where q1, . . . , qn are i.i.d. observations with the same distribution as
that of q.

The forms of L(f ;q) corresponding to the pointwise, pairwise, and
listwise approaches are given as follows.

7.2.1 The Pointwise Approach

In the pointwise approach, each document x is given a ground truth
label1 y ∈ Y, which stands for the relevance degree of x with regards
to a specific query q.

For a fixed query q, (x,y) is assumed to be a random variable sam-
pled according to probability distribution D(1)

q (which is dependent on
query q). Then, L(f ;q) is defined as below:

L(f ;q) =
∫

X×Y
L(f ;x,y)D(1)

q (dx,dy), (7.9)

where L(f ;x,y) is the loss2 of the scoring function f on sample (x,y).
As the distribution D(1)

q is unknown, the average of the loss over a
group of training samples is used to estimate L(f ;q):

L̂(f ;q) =
1
m

m∑
j=1

L(f ;xj ,yj), (7.10)

where {xj ,yj}m
j=1 stands for m i.i.d. observations with distribution D(1)

q .

1 For example, Y = {0,1} for binary classification based algorithms, and Y = R (where R

stands for the space of real values) for regression based algorithms.
2 For example, L(f ;x,y) can be defined as I{sgn(f(x)) �=y} (indicator function) in binary
classification and (f(x) − y)2 in regression.

7.2 A Query-level Ranking Framework 307

7.2.2 The Pairwise Approach

As introduced in the previous subsection, there are two views on the
generalization analysis of the pairwise approach: the U-statistics view
and the average view. For both views, it is not difficult to extend them
to be fitted into the query-level ranking framework.

(1) The U -statistics view

With the U -statistics view, one assumes i.i.d. distribution of the doc-
uments and their ground truth labels with respect to a query. Given
two documents associated with query q and their ground truth labels,
(x1,y1) and (x2,y2), (x1,x2,y1,y2) is regarded as a random variable
with probabilistic distribution D(2)

q . Then L(f ;q) can be defined as
follows:

L(f ;q) =
∫

(X×Y)2
L(f ;x1,x2,y1,y2)D(2)

q (dx1,dx2,dy1,dy2), (7.11)

where L(f ;x1,x2,y1,y2) is the loss of f on sample (x1,x2,y1,y2).
As the distribution D(2)

q is unknown, the following U -statistics equa-
tion is used to estimate L(f ;q):

L̂(f ;q) =
1

C2
m

m∑
u=1

m∑
v=u+1

L(f ;xu,xv,yu,yv), (7.12)

where (xu,xv,yu,yv),u,v = 1, . . . ,m can be viewed as C2
m observations

with distribution D(2)
q , which might not be independent of each other.

Since two document pairs are not independent under the aforemen-
tioned assumptions, to perform the generalization analysis, one needs
to use some advanced statistical tools such as [27, 124].

(2) The average view

The average view assumes the i.i.d. distribution of document pairs.
More specifically, with the average view, each document pair (x1,x2)
is given a ground truth label y ∈ Y = {−1,1}, where y = 1 indicates
that document x1 is more relevant than x2 and y = −1 otherwise.
Then (x1,x2,y) is assumed to be a random variable with probabilistic

308 Statistical Ranking Theory

distribution D(3)
q , and L(f ;q) can be defined as follows:

L(f ;q) =
∫

X×X×Y
L(f ;x1,x2,y)D(3)

q (dx1,dx2,dy), (7.13)

where L(f ;x1,x2,y) is the loss of f on sample (x1,x2,y).
As the distribution D(3)

q is unknown, the average of the loss over
training document pairs is used to estimate L(f ;q):

L̂(f ;q) =
1
m̃

m̃∑
j=1

L(f ;xj1 ,xj2 ,yj), (7.14)

where {xj1 ,xj2 ,yj}m̃
j=1 stands for m̃ i.i.d. observations with distribution

D(3)
q , and m̃ is the number of document pairs associated with query q

in the training data.

7.2.3 The Listwise Approach

In the listwise approach, each query is represented by a group of doc-
uments (denoted by x) and their ground truth labels, and queries are
assumed to be i.i.d. random variables. As mentioned earlier, there are
two types of output spaces used in the listwise approach. For simplic-
ity and clarity, in this subsection, our discussion focuses on the case
where πy is used as the ground truth label. Furthermore, we will take
re-ranking as our target application,3 where there are the same number
of documents (i.e., m) for every query under investigation.

Let X m be the input space, whose elements are m feature vectors
corresponding to m documents associated with a query.4 Let Y be the
output space, whose elements are permutations of m documents. Then
(x,πy) can be regarded as a random variable sampled from the space
X m × Y according to an unknown probability distribution P (·, ·).

Define

L(f ;q) = L(f ;x,πy), (7.15)

3 In the re-ranking application, “all the documents” may mean all the documents under
investigation, e.g., the top 1000 documents with respect to a query returned by a conven-
tional ranking model like BM25.

4 We call m the list length in this tutorial, and suppose m ≥ 3. Otherwise the listwise
approach will be reduced to the pointwise or pairwise approach.

7.3 Query-level Generalization Analysis 309

where L(f ;x,πy) denotes a listwise ranking loss (e.g., the likelihood loss
in [129] and the K–L divergence loss in [17]) defined on the random
variable (x,πy) and a scoring function f .

7.3 Query-level Generalization Analysis

In this subsection, we review the work on query-level generalization
analysis by using the aforementioned query-level ranking framework.
Here, the query-level generalization analysis is concerned with whether
and at what convergence rate, the empirical query-level risk converges
to the expected query-level risk, when the number of training queries
approaches infinity. Please note the differences between the query-level
generalization analysis and the previous work on generalization anal-
ysis as reviewed in Section 7.1.1. As for the query-level generalization
analysis, one only cares about the number of training queries, but
not the number of training documents. In previous work, however,
it is the number of training documents that really matters for the
generalization bound.

7.3.1 On the Pairwise Approach

In [76], the stability theory [12] was extended to perform the query-level
generalization analysis on the pairwise approach. The average view is
taken in the analysis.

To assist the analysis, the definition of uniform leave-one-query-out
pairwise loss stability (also referred to as query-level stability for short)
was given in [76]. Suppose we have learned a ranking model f1 from
a training set with n queries, using an algorithm A. Suppose L is the
loss function that is minimized in algorithm A. Then we randomly
remove a query and all its associated document pairs from the training
data, and learn a ranking model f2 from the new training set. If the
difference between the losses with respect to f1 and f2 on any unseen
document pair (x1,x2) is smaller than τ(n), we say the algorithm A
has uniform leave-one-query-out pairwise loss stability with coefficient
τ with respect to L.

Based on the concept of query-level stability, a query-level gener-
alization bound has been derived in [76], as shown in Theorem 7.4.

310 Statistical Ranking Theory

The theorem states that if a pairwise ranking algorithm has query-
level stability, then with a large probability, the expected query-level
risk can be bounded by the empirical query-level risk and a term that
depends on the query number and the stability of the algorithm.

Theorem 7.4. Let A be a learning-to-rank algorithm, (q1,S
(1)), . . .,

(qn,S(n)) be n training queries, and let L be the pairwise loss function. If

(1) ∀(q1,S
(1)), . . . ,(qn,S(n)),∀q ∈ Q,(x1,x2,y) ∈ X × X × Y,∣∣L(f(qi,S(i))n

i=1
,x1,x2,y

)∣∣ ≤ B,
(2) A has query-level stability with coefficient τ ,

then ∀δ ∈ (0,1) with probability at least 1 − δ over the samples of{
(qi,S

(i))
}n

i=1 in the product space
∏n

i=1
{Q × (X × X × Y)∞}

, the
following inequality holds:

RL

(
f{(qi,S(i))}n

i=1

) ≤ R̂L

(
f{(qi,S(i))}n

i=1

)
+ 2τ(n) + (4nτ(n) + B)

√
log 1

δ

2n
. (7.16)

When using this theorem to perform the query-level generalization
analysis on pairwise ranking algorithms, what one needs to do is to
compute the query-level stability coefficient τ(n) of the algorithms.

Query-level generalization bound for ranking SVM : As proven in [76],
Ranking SVM has query-level stability with coefficient τ(n) = 4κ2

λn ×
max m̃(i)

1
n

∑n
i=1 m̃(i) , where m̃(i) is the number of document pairs associated

with query qi, and ∀x ∈ X ,K(x,x) ≤ κ2 < ∞.
On this basis, one can have the following discussions regarding the

query-level generalization ability of Ranking SVM:

• When the number of training queries approaches infinity,
with a large probability the empirical query-level risk of
Ranking SVM will converge to its expected query-level risk,
at a rate of O

(1√
n

)
.

7.3 Query-level Generalization Analysis 311

• When the number of training queries is finite, the expected
query-level risk and the empirical query-level risk are not
necessarily close to each other.

Query-level Generalization Bound for IR-SVM : As proven in [76],
IR-SVM [16] has a query-level stability with coefficient τ(n) = 4κ2

λn .
On this basis, one can find that:

• When the number of training queries approaches infinity,
with a large probability the empirical query-level risk of IR-
SVM will converge to its expected query-level risk, at a con-
vergence rate of O(1√

n
).

• When the number of queries is finite, the query-level gen-
eralization bound is a decreasing function of the number of
training queries.

By comparing the query-level generalization abilities of Ranking
SVM and IR-SVM, we can find that the convergence rates of the empir-
ical query-level risks to the expected query-level risks for these two algo-
rithms are both O(1√

n
). However, by comparing the case with a finite

number of training queries, the bound for IR-SVM is much tighter than
that for Ranking SVM.

7.3.2 On the Listwise Approach

In [75], the theory of the Rademacher average [10, 11] was extended to
perform the query-level generalization analysis on the listwise approach.
Specifically, the algorithms that minimize listwise ranking losses intro-
duced in Section 4.2 were taken as examples in the analysis.

The Rademacher average measures how much the function class can
fit random noise, which is defined below.

Definition 7.1. For a function class G, the empirical Rademacher
average is defined as:

R̂(G) = Eσ sup
g∈G

1
n

n∑
i=1

σig(zi), (7.17)

312 Statistical Ranking Theory

where zi, i = 1, . . . ,n are i.i.d. random variables, and σi, i = 1, . . . ,n are
i.i.d. random variables, with probability 1

2 of taking a value of 1 or −1.

By fitting the theory of the Rademacher average [10, 11] to the
query-level ranking framework, the query-level generalization bound
for listwise ranking algorithms have been derived [75], as shown in
the following theorem. Here it is assumed that ∀x ∈ X ,‖x‖ ≤ M ,
and the ranking function f is learned from the linear function class
F = {x → wT x : ‖w‖ ≤ B.}, for simplicity. In this case, one has ∀x ∈
X , |f(x)| ≤ BM .

Theorem 7.5. Let A denote a listwise ranking algorithm, and
let LA(f ;x,πy) be its listwise loss, given the training data S =
{(x(i),π

(i)
y), i = 1, . . . ,n}, if ∀f ∈ F ,(x,πy) ∈ X m × Y,LA(f ;x,πy) ∈

[0,1], then with probability at least 1 − δ, the following inequality
holds:

sup
f∈F

(RLA(f) − R̂LA(f ;S)) ≤ 2CA(ϕ)N(ϕ)R̂(F) +

√
2log 2

δ

n
, (7.18)

where R̂(F) is the Rademacher average of the scoring function
class (for the linear scoring function, we have R̂(F) ≤ 2BM√

n
); N(ϕ) =

supx∈[−BM,BM] ϕ
′(x) measures the smoothness of the transformation

function ϕ; and CA(ϕ) is an algorithm-dependent factor.

The expressions of N(ϕ) and CA(ϕ) for ListNet and ListMLE, with
respect to three representative transformation functions,5 are listed in
Table 7.1.

From Theorem 7.5, one can see that when the number of training
queries n approaches infinity, the query-level generalization bound
will converge to zero at a rate of O

(1√
n

)
. Furthermore, by compar-

ing the query-level generalization bound for different listwise ranking

5 The three transformation functions are:

• Linear Functions: ϕL(x) = ax + b,x ∈ [−BM ,BM].
• Exponential Functions: ϕE(x) = eax,x ∈ [−BM ,BM].
• Sigmoid Functions: ϕS(x) = 1

1+e−ax ,x ∈ [−BM ,BM].

7.4 Discussions 313

Table 7.1 N(ϕ) and CA(ϕ) for listwise ranking algorithms.

ϕ N(ϕ) CListMLE(ϕ) CListNet(ϕ)

ϕL a 2
(b−aBM)

(
logm+log b+aBM

b−aBM

) 2m!
(b−aBM)

(
logm+log b+aBM

b−aBM

)

ϕE aeaBM 2eaBM

logm+2aBM
2m!eaBM

logm+2aBM

ϕS
aeaBM

(1+e−aBM)2
2(1+eaBM)
logm+aBM

2m!(1+eaBM)
logm+aBM

algorithms, and with regards to different transformation functions, one
can have the following observations:

• The query-level generalization bound for ListMLE is much
tighter than that for ListNet, especially when m, the length
of the list, is large.

• The query-level generalization bound for ListMLE decreases
monotonously, while that of ListNet increases monotonously,
with respect to m.

• The linear transformation function is the best choice in terms
of the query-level generalization bound in most cases.

7.4 Discussions

Since learning to rank is still a new research area, many theoretical
issues are still left open and significant efforts are still needed to make
it a legitimate branch of ML.

Actually, the full story of the statistical ranking theory should con-
sist of two parts: the statistical consistency and the generalization abil-
ity of learning-to-rank methods. We have briefly reviewed the recent
advances on generalization analysis in terms of a given surrogate loss
function L, i.e., when the number of training queries approaches infin-
ity, whether the empirical risk defined with the surrogate loss L can
converge to the expected risk, which is also defined with the same sur-
rogate loss L. The statistical consistency further discusses whether the
minimization of the expected risk defined with the surrogate loss L can
lead to the minimization of the expected risk defined with the true loss
(which is not clearly defined for ranking yet).

314 Statistical Ranking Theory

Although there has been some work discussing the consistency for
ranking in the literature, the problem has yet been adequately solved.
For example, the consistency for bipartite ranking was studied in [28],
which is, however, more like a classification problem and much simpler
than real ranking problems. For another example, in [27], the consis-
tency for pairwise ranking was discussed, but no necessary discussions
were provided on how to extend this result to listwise ranking. In [33],
the consistency issue with respect to DCG was studied. However, the
authors only discussed the regression loss and thus their work is insuf-
ficient to explain the majority of learning-to-rank algorithms that are
based on pairwise or listwise loss functions. In [129], the consistency of
listwise ranking was investigated. However, the true loss is defined as
a 0–1 loss at the permutation level, which is clearly not in accordance
with our understanding of the loss in ranking (e.g., errors at different
positions should lead to different losses). Therefore, all the aforemen-
tioned work cannot be used to well explain the consistency issue in
learning to rank for IR.

To move forward, it is very important to define a reasonable true
loss for ranking. One choice is to directly use the IR evaluation mea-
sures to define the true loss. However, there are still several problems
with this. For example, there are many different IR evaluation mea-
sures, and it is not clear which one should be regarded as the true loss.
Since these measures are not necessarily consistent with each other, no
matter which one we choose as the true loss, it looks not that “true”
after all. Second, according to the practice of classification, the true loss
is usually not what we use to evaluate the performance of a learning
algorithm. For example, while the 0–1 loss is used as the true loss of
classification, precision, recall and F -scores are widely used as evalu-
ation measures. Based on these discussions, it is not clear yet how to
define the true loss for ranking, but it is relatively easy to get some
principles of defining such a true loss. For example, the true loss for
ranking should be defined at the query level and should consider the
position. This could be future work of the theoretical study on learning
to rank.

8
Summary and Outlook

In this tutorial, we have mainly introduced three approaches to learn-
ing to rank. The first is called the pointwise approach, which reduces
ranking to regression, classification, or ordinal regression on each single
document. The second is called the pairwise approach, which basically
formulates ranking as a pairwise classification problem. The third is
called the listwise approach, which regards ranking as a new prob-
lem, and tries either to directly optimize the non-smooth IR evaluation
measures, or to minimize listwise ranking losses. We have introduced
the representative algorithms of these three approaches, discussed their
advantages and problems, and validated their empirical effectiveness on
the LETOR benchmark dataset. In addition, we have also introduced
the statistical ranking theory, and analyzed the query-level generaliza-
tion ability of several learning-to-rank methods.

As a summary, we plot the representative algorithms introduced in
this tutorial in Figure 8.1. From the figure, one can find that learning
to rank for IR has become hotter and hotter in recent years, and more
and more attention has been paid to the listwise approach.

Note that this tutorial is by no means a complete review of the
area of learning to rank, especially considering that this is still a

315

316 Summary and Outlook

Fig. 8.1 Learning to rank algorithms.

developing research area. There is much other work that has not been
covered, some of which cannot be easily categorized into the three
approaches:

• Ground truth mining [3, 68, 105], which targets automatically
mining ground truth labels for learning to rank, mainly from
click-through logs of search engines.

• Feature engineering [51], which includes feature selection,
dimensionality reduction, and effective feature learning.

• Query-dependent ranking [52, 71], which adopts different
ranking models for different types of queries, based on either
hard query type classification or the soft nearest neighbor
based approach.

• Supervised rank aggregation [80], which learns the ranking
model not to combine features, but to aggregate candidate
ranked lists.

317

• Semi-supervised/active ranking [5, 40, 67, 106, 135], which
leverages the large number of unlabeled queries and docu-
ments to improve the performance of ranking model learning.

• Relational/global ranking [38, 103, 104, 107, 137], which does
not only make use of the scoring function for ranking, but
also considers the inter-relationship between documents to
define more complex ranking models.

• Other learning-to-rank algorithms [15, 19, 32, 93, 109, 127,
142, 143, 144] that are based on association rules, decision
systems, and other technologies; other theoretical analysis on
ranking [50]; and applications of learning-to-rank methods
[87, 128].

At the end of this tutorial, let us come back to the questions we
raised in the introduction, and give their possible answers.

(1) To what respect are these learning-to-rank algorithms similar and
in which aspects do they differ? What are the strengths and weaknesses
of each algorithm?

The answer can be found by the algorithm description and categoriza-
tion. Basically all the algorithms belonging to the pointwise approach
reduce ranking to either regression, classification, or ordinal regression.
Almost all algorithms belonging to the pairwise approach reduce rank-
ing to a pairwise classification. The advantage of these two approaches
is that many existing theories and tools in ML can be directly applied.
However, distinct properties of ranking have not been considered in
such formulations. For example, most IR evaluation measures are
query-level and position-based. However, neither the query informa-
tion nor the position information is visible to the loss functions of these
two approaches. The listwise approach instead treats ranking as a new
problem, and defines specific algorithms for it. It can better leverage the
concept of query, and consider the position information in the ranking
results when training the ranking model. The problem with the list-
wise approach is that it is in general more complex than the pointwise
and pairwise approaches. Furthermore, a new theoretical foundation is
needed to explain the behaviors of listwise ranking algorithms.

318 Summary and Outlook

According to the analysis in Section 5, the loss functions of most
learning-to-rank methods, no matter pointwise, pairwise, or listwise, are
upper bounds of (1 − NDCG). Therefore, the minimization of these
loss functions can lead to the minimization of (1 − NDCG), or the
maximization of NDCG.

(2) Empirically speaking, which of those many learning-to-rank algo-
rithms perform the best? What kind of datasets can be used to make a
fair comparison among different learning-to-rank algorithms?

According to the discussions in Section 6, the LETOR benchmark
dataset has recently been widely used. Due to the standard data collec-
tion, feature representation, dataset partitioning, and evaluation tools
in LETOR, it is possible to perform fair comparisons among different
learning-to-rank methods. Empirical studies on LETOR have shown
that the listwise ranking algorithms seem to have certain advantages
over other algorithms, especially for top positions of the ranking result,
and the pairwise ranking algorithms seem to outperform the point-
wise algorithms. These results are in accordance with the discussions
in this tutorial. However, as pointed out in Section 6, these experi-
mental results are still primal and by carefully tuning the optimization
process, the performance of every algorithm can be further improved.

(3) Theoretically speaking, is ranking a new ML problem, or can it be
simply reduced to existing ML problems? What are the unique theoret-
ical issues for ranking that should be investigated?

According to the discussions in Section 7, we can clearly see that it is
better to regard ranking as a new ML problem, rather than reducing it
to existing problems. Unique properties of ranking for IR as compared
to classification and regression lie in that the evaluation of a ranking
model is performed at the query level and is position based. Therefore,
the risks should be defined at the query level as well, and a query-level
theoretical framework is desired for conducting analyses on learning-to-
rank methods. Furthermore, the “true loss” for ranking should consider
the position information in the ranking result, but not as simple as the
0–1 loss in classification.

319

(4) Are there many remaining issues regarding learning to rank we
should study in the future? What are they?

As mentioned previously, there are still many open problems. We list
some of them as follows, as future work on learning to rank.

Learning from Logs

• The existing benchmark datasets are all of relatively small
scales. From a ML point of view, hundreds of queries can-
not reasonably guarantee the effectiveness of a learning-to-
rank algorithm. Developing realistically sized datasets is very
important. Click-through log mining is one of the possible
approaches to construct large-scale training data. Some work
has been done along this direction [3, 68, 105], however, they
also have certain limitations. Basically, the work has tried to
map the click-through logs to pairwise preferences or mul-
tiple ordered categories. However, this process is not always
necessary (and sometimes even not reasonable). As we know,
the multiple ordered categories are designed for human label-
ers, which cannot cover all the rich information contained in
the click-through logs, e.g., the user sessions, the frequency of
clicking a certain document, the frequency of a certain click
pattern, and the diversity in the intentions of different users.
If converting the log data to multiple ordered categories or
pairwise preferences, the information will be missing. There-
fore, it is meaningful to reconsider the problem, and probably
change the learning algorithms to adapt to the log data. For
example, one can regard the click-through logs (without min-
ing) as the ground truth, and define the loss function based
on its likelihood.

Feature Engineering

• After one extracts a set of features for each document, it
seems the learning-to-rank problem becomes a standard pre-
diction task. However, one should notice that ranking is
deeply rooted in IR, so the eventual goal of learning to rank

320 Summary and Outlook

is not only to develop a set of new algorithms and theories,
but also to substantially improve the ranking performance.
For this purpose, feature engineering cannot be overlooked.
It is a killer aspect whether we can encode the knowledge on
IR accumulated in the past half a century in the extracted
features. Currently, this kind of work has not been given
enough attention. In the future, we should study the possi-
bility of learning effective features.

Advanced Ranking Methods

• In most existing learning-to-rank algorithms, a scoring
function is used for the sake of simplicity and efficiency.
However, sometimes such a simplification cannot handle com-
plex ranking problems. People have made some attempts on
leveraging the inter-relationships between objects and some
relational (global) ranking algorithms [103, 104, 107] have
been proposed. However, this is not yet the most straightfor-
ward way of defining the hypothesis for ranking, especially
for the listwise approach. Since the output space of the list-
wise approach is composed of permutations of documents,
the ranking hypothesis should better directly output permu-
tations of the documents, rather than output scores for each
of the individual documents. In this regard, defining the rank-
ing hypothesis as a multi-variate function directly on permu-
tations could be a future research topic. Note that the task
is challenging because permutation-based ranking functions
can be very complex due to the extremely large number of
permutations, but we think it is worthy and also possible to
find efficient algorithms to deal with this situation.

• Motivated by the recent advances in ML, one should expect
corresponding progress in learning to rank. For example,
transfer ranking, multi-task ranking, semi-supervised rank-
ing, and active ranking can all be promising future research
topics. However, when performing such research, one should
pay attention to the unique properties of ranking, and make

321

necessary adaptions when introducing these concepts and
technologies. For example, we have mentioned some previous
work on semi-supervised ranking [40, 67, 5]. Basically, the
work simply borrows some concepts and algorithms from
semi-supervised classification. However, the validity of doing
so needs further checking. For instance, since similarity is
essential to classification (“similar documents should have
the same class label”), it looks very natural and reasonable to
propagate labels cross similar documents. However, in rank-
ing, similarity does not play the same central role. It seems
that preference is more fundamental than similarity. Then it
is questionable to still conduct similarity based label prop-
agation for semi-supervised ranking. Furthermore, in clas-
sification, if we do not have class labels, we know nothing
about the objects. However, in ranking, even if we do not
have ground truth labels, we still have several very strong
rankers, such as BM25 and language models for IR, which
can give us a relatively reasonable guess on which document
should be ranked higher. Therefore, we can assume that we
have some knowledge about the unlabeled data. If we can
incorporate such knowledge into the semi-supervised rank-
ing process, we may have the chance to do a better job.

• As introduced in this tutorial, most efforts on learning to
rank have been given to discriminative learning. However, as
we notice, generative learning is also a very important branch
of ML. There is no reason that generative learning cannot be
used in ranking. This could be a promising research direction
of learning to rank, from both algorithmic and theoretical
points of view.

Ranking Theory

• Regarding existing algorithms directly optimizing IR evalua-
tion measures, although a theory has been proposed to quan-
tify the “directness” of some algorithms in the large sample
limit, it is not clear how such algorithms will perform on the

322 Summary and Outlook

test data when the training data is limited. This could also
be a future research direction.

• As compared to the efforts on algorithms, the theoretical
work on ranking is not yet sufficient. For example, it is still
unclear about the “true loss” in ranking, and in addition to
the generalization analysis, statistical consistency and fast
convergence rate have not been adequately studied. Further-
more, some fundamental questions have not been answered
with regards to the ranking theory, such as the complexity of
the function class in ranking. This could also be an important
research direction for learning to rank.

Overall, this tutorial is just a stage-wise summary of this hot
research field. Given the fast development of learning to rank, we can
foresee that many new algorithms and theories will appear in the future.
We hope that this tutorial can motivate more people to work on learn-
ing to rank, so as to make this research direction more impactful in
both the IR and ML communities.

Acknowledgments

The author would like to thank Yanyan Lan, Tao Qin, Jun Xu, and
Hang Li for their helpful suggestions and comments on this tutorial.
The author would also like to thank anonymous reviewers.

323

References

[1] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth, “Generaliza-
tion bounds for the area under the ROC curve,” Journal of Machine Learning,
vol. 6, pp. 393–425, 2005.

[2] S. Agarwal and P. Niyogi, “Stability and generalization of bipartite ranking
algorithms,” in COLT 2005, pp. 32–47, 2005.

[3] E. Agichtein, E. Brill, S. T. Dumais, and R. Ragno, “Learning user interaction
models for predicting web search result preferences,” in SIGIR 2006, pp. 3–10,
2006.

[4] H. Almeida, M. Goncalves, M. Cristo, and P. Calado, “A combined component
approach for finding collection-adapted ranking functions based on genetic
programming,” in SIGIR 2007, pp. 399–406, 2007.

[5] M.-R. Amini, T.-V. Truong, and C. Goutte, “A boosting algorithm for learn-
ing bipartite ranking functions with partially labeled data,” in SIGIR 2008,
pp. 99–106, 2008.

[6] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector machines
for multiple-instance learning,” in NIPS 2003, pp. 561–568, 2003.

[7] J. A. Aslam and M. Montague, “Models for metasearch,” in SIGIR 2001,
pp. 276–284, 2001.

[8] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison
Wesley, May 1999.

[9] B. Bartell, G. W. Cottrell, and R. Belew, “Learning to retrieve information,”
in SCC 1995, 1995.

[10] P. L. Bartlett and S. Mendelson, “Rademacher and Gaussian complexities risk
bounds and structural results,” Journal of Machine Learning, pp. 463–482,
2002.

324

References 325

[11] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statistical
learning theory,” in Advanced Lectures on Machine Learning, pp. 169–207,
Berlin/Heidelberg: Springer, 2004.

[12] O. Bousquet and A. Elisseeff, “Stability and generalization,” The Journal of
Machine Learning Research, vol. 2, pp. 449–526, 2002.

[13] C. J. Burges, R. Ragno, and Q. V. Le, “Learning to rank with nonsmooth
cost functions,” in NIPS 2006, pp. 395–402, 2006.

[14] C. J. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” in ICML 2005,
pp. 89–96, 2005.

[15] G. Cao, J. Nie, L. Si, and J. Bai, “Learning to rank documents for ad-hoc
retrieval with regularized models,” in SIGIR 2007 Workshop on Learning to
Rank for Information Retrieval, 2007.

[16] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon, “Adapting ranking
SVM to document retrieval,” in SIGIR 2006, pp. 186–193, 2006.

[17] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank: From
pairwise approach to listwise approach,” in ICML 2007, pp. 129–136, 2007.

[18] B. Carterette, V. Pavlu, E. Kanoulas, J. A. Aslam, and J. Allan, “Evaluation
over thousands of queries,” in SIGIR 2008, pp. 651–658, 2008.

[19] V. R. Carvalho, J. L. Elsas, W. W. Cohen, and J. G. Carbonell, “A meta-
learning approach for robust rank learning,” in SIGIR 2008 Workshop on
Learning to Rank for Information Retrieval, 2008.

[20] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya, “Structured
learning for non-smooth ranking losses,” in SIGKDD 2008, pp. 88–96, 2008.

[21] O. Chapelle, Q. Le, and A. Smola, “Large margin optimization of ranking
measures,” in NIPS Workshop on Machine Learning for Web Search 2007,
2007.

[22] W. Chen, Y. Lan, T.-Y. Liu, and H. Li, “A unified view on loss functions in
learning to rank,” Technical Report, Microsoft Research, MSR-TR-2009-39,
2009.

[23] P. Chirita, J. Diederich, and W. Nejdl, “MailRank: Using ranking for spam
detection,” in CIKM 2005, pp. 373–380, New York, NY, USA: ACM, 2005.

[24] W. Chu and Z. Ghahramani, “Gaussian processes for ordinal regression,”
Journal of Machine Learning Research, vol. 6, pp. 1019–1041, 2005.

[25] W. Chu and Z. Ghahramani, “Preference learning with Gaussian processes,”
in ICML 2005, pp. 137–144, 2005.

[26] W. Chu and S. S. Keerthi, “New approaches to support vector ordinal regres-
sion,” in ICML 2005, pp. 145–152, 2005.

[27] S. Clemencon, G. Lugosi, and N. Vayatis, “Ranking and empirical minimiza-
tion of U -statistics,” The Annals of Statistics, vol. 36, pp. 844–874, 2008.

[28] S. Clemencon and N. Vayatis, “Ranking the best instances,” Journal of
Machine Learning Research, vol. 8, pp. 2671–2699, December 2007.

[29] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,” in
NIPS 1998, Vol. 10, pp. 243–270, 1998.

[30] M. Collins, “Ranking algorithms for named-entity extraction: Boosting and
the voted perceptron,” in ACL 2002, pp. 7–12, 2002.

326 References

[31] W. S. Cooper, F. C. Gey, and D. P. Dabney, “Probabilistic retrieval based on
staged logistic regression,” in SIGIR 1992, pp. 198–210, 1992.

[32] C. Cortes, M. Mohri, and A. Rastogi, “Magnitude-preserving ranking algo-
rithms,” in ICML 2007, pp. 169–176, 2007.

[33] D. Cossock and T. Zhang, “Subset ranking using regression,” in COLT 2006,
pp. 605–619, 2006.

[34] K. Crammer and Y. Singer, “Pranking with ranking,” in NIPS 2002,
pp. 641–647, 2002.

[35] N. Craswell, D. Hawking, R. Wilkinson, and M. Wu, “Overview of the TREC
2003 Web track,” in TREC 2003, pp. 78–92, 2003.

[36] K. Dave, S. Lawrence, and D. Pennock, “Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews,” in WWW 2003,
pp. 519–528, New York, NY, USA: ACM Press, 2003.

[37] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the Ameri-
can Society for Information Science, vol. 41, pp. 391–407, 1990.

[38] F. Diaz, “Regularizing query-based retrieval scores,” Information Retrieval,
vol. 10, pp. 531–562, 2007.

[39] H. Drucker, B. Shahrary, and D. C. Gibbon, “Support vector machines:
Relevance feedback and information retrieval,” Information Processing and
Management, vol. 38, pp. 305–323, 2002.

[40] K. Duh and K. Kirchhoff, “Learning to rank with partially-labeled data,” in
SIGIR 2008, pp. 251–258, 2008.

[41] W. Fan, E. A. Fox, P. Pathak, and H. Wu, “The effects of fitness functions
on genetic programming based ranking discovery for web search,” Journal of
American Society for Information Science and Technology, vol. 55, pp. 628–
636, 2004.

[42] W. Fan, M. Gordon, and P. Pathak, “Discovery of context-specific rank-
ing functions for effective information retrieval using genetic programming,”
IEEE Transactions on Knowledge and Data Engineering, vol. 16, pp. 523–527,
2004.

[43] W. Fan, M. Gordon, and P. Pathak, “A generic ranking function discovery
framework by genetic programming for information retrieval,” Information
Processing and Management, vol. 40, pp. 587–602, 2004.

[44] W. Fan, M. Gordon, and P. Pathak, “Genetic programming-based discov-
ery of ranking functions for effective web search,” Journal of Management of
Information Systems, vol. 21, pp. 37–56, 2005.

[45] W. Fan, M. Gordon, and P. Pathak, “On linear mixture of expert approaches
to information retrieval,” Decision Support System, vol. 42, pp. 975–987, 2006.

[46] W. Fan, M. D. Gordon, W. Xi, and E. A. Fox, “Ranking function optimiza-
tion for effective web search by genetic programming: An empirical study,” in
HICSS 2004, pp. 40105, 2004.

[47] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting
algorithm for combining preferences,” Journal of Machine Learning Research,
vol. 4, pp. 933–969, 2003.

References 327

[48] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of online
learning and an application to boosting,” Journal of Computer and System
Sciences, vol. 55, pp. 119–139, 1995.

[49] N. Fuhr, “Optimum polynomial retrieval functions based on the probabil-
ity ranking principle,” ACM Transactions on Information Systems, vol. 7,
pp. 183–204, 1989.

[50] G. Fung, R. Rosales, and B. Krishnapuram, “Learning rankings via convex
hull separation,” in NIPS 2005 Workshop on Learning to Rank, 2005.

[51] X.-B. Geng, T.-Y. Liu, and T. Qin, “Feature selection for ranking,” in SIGIR
2007, pp. 407–414, 2007.

[52] X.-B. Geng, T.-Y. Liu, T. Qin, H. Li, and H.-Y. Shum, “Query-dependent
ranking using k-nearest neighbor,” in SIGIR 2008, pp. 115–122, 2008.

[53] F. C. Gey, “Inferring probability of relevance using the method of logistic
regression,” in SIGIR 1994, pp. 222–231, 1994.

[54] S. Guiasu and A. Shenitzer, “The principle of maximum entropy,” The Math-
ematical Intelligencer, vol. 7, pp. 42–48, 1985.

[55] J. Guiver and E. Snelson, “Learning to rank with softrank and Gaussian
processes,” in SIGIR 2008, pp. 259–266, 2008.

[56] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam with
trustrank,” in VLDB 2004, pp. 576–587, VLDB Endowment, 2004.

[57] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam with
trustrank,” in VLDB 2004, pp. 576–587, 2004.

[58] E. Harrington, “Online ranking/collaborative filtering using the perceptron
algorithm,” in ICML 2003, Vol. 20, pp. 250–257, 2003.

[59] E. F. Harrington, “Online ranking/collaborative filtering using the perceptron
algorithm,” in ICML 2003, pp. 250–257, 2003.

[60] B. He and I. Ounis, “A study of parameter tuning for term frequency normal-
ization,” in CIKM 2003, pp. 10–16, 2003.

[61] Y. He and T.-Y. Liu, “Are algorithms directly optimizing IR measures really
direct?,” Technical Report, Microsoft Research, MSR-TR-2008-154, 2008.

[62] R. Herbrich, T. Graepel, and C. Campbell, “Bayes point machines,” Journal
of Machine Learning Research, vol. 1, pp. 245–279, 2001.

[63] R. Herbrich, K. Obermayer, and T. Graepel, “Large margin rank boundaries
for ordinal regression,” in Advances in Large Margin Classifiers, pp. 115–132,
2000.

[64] W. Hersh, C. Buckley, T. J. Leone, and D. Hickam, “OHSUMED: An interac-
tive retrieval evaluation and new large test collection for research,” in SIGIR
1994, pp. 192–201, 1994.

[65] K. Järvelin and J. Kekäläinen, “IR evaluation methods for retrieving highly
relevant documents,” in SIGIR 2000, pp. 41–48, 2000.

[66] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of IR
techniques,” ACM Transactions on Information Systems, vol. 20, pp. 422–446,
2002.

[67] R. Jin, H. Valizadegan, and H. Li, “Ranking refinement and its application to
information retrieval,” in WWW 2008, pp. 397–406, 2008.

[68] T. Joachims, “Optimizing search engines using clickthrough data,” in KDD
2002, pp. 133–142, 2002.

328 References

[69] T. Joachims, “Evaluating retrieval performance using clickthrough data,” Text
Mining, pp. 79–96, 2003.

[70] T. Joachims, “A support vector method for multivariate performance mea-
sures,” in CML 2005, pp. 377–384, 2005.

[71] I. Kang and G. Kim, “Query type classification for web document retrieval,”
in SIGIR 2003, pp. 64–71, 2003.

[72] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of ACM, vol. 46, pp. 604–632, 1999.

[73] S. Kramer, G. Widmer, B. Pfahringer, and M. D. Groeve, “Prediction of ordi-
nal classes using regression trees,” Funfamenta Informaticae, vol. 34, pp. 1–15,
2000.

[74] J. Lafferty and C. Zhai, “Document language models, query models and risk
minimization for information retrieval,” in SIGIR 2001, pp. 111–119, 2001.

[75] Y. Lan and T.-Y. Liu, “Generalization analysis of listwise learning-to-rank
algorithms,” in ICML 2009, 2009.

[76] Y. Lan, T.-Y. Liu, T. Qin, Z. Ma, and H. Li, “Query-level stability and
generalization in learning to rank,” in ICML 2008, pp. 512–519, 2008.

[77] F. Li and Y. Yang, “A loss function analysis for classification methods in text
categorization,” in ICML 2003, pp. 472–479, 2003.

[78] P. Li, C. Burges, and Q. Wu, “McRank: Learning to rank using multiple
classification and gradient boosting,” in NIPS 2007, pp. 845–852, 2007.

[79] T.-Y. Liu, J. Xu, T. Qin, W.-Y. Xiong, and H. Li, “LETOR: Benchmark
dataset for research on learning to rank for information retrieval,” in SIGIR
’07 Workshop on Learning to Rank for Information Retrieval, 2007.

[80] Y. Liu, T.-Y. Liu, T. Qin, Z. Ma, and H. Li, “Supervised rank aggregation,”
in WWW 2007, pp. 481–490, 2007.

[81] R. D. Luce, Individual Choice Behavior. New York: Wiley, 1959.
[82] C. L. Mallows, “Non-null ranking models,” Biometrika, vol. 44, pp. 114–130,

1975.
[83] M. E. Maron and J. L. Kuhns, “On relevance, probabilistic indexing and

information retrieval,” Journal of the ACM, vol. 7, pp. 216–244, 1960.
[84] I. Matveeva, C. Burges, T. Burkard, A. Laucius, and L. Wong, “High accuracy

retrieval with multiple nested ranker,” in SIGIR 2006, pp. 437–444, 2006.
[85] D. A. Metzler and W. B. Croft, “A Markov random field model for term

dependencies,” in SIGIR 2005, pp. 472–479, 2005.
[86] D. A. Metzler, W. B. Croft, and A. McCallum, “Direct maximization of rank-

based metrics for information retrieval,” in CIIR Technical Report, 2005.
[87] D. A. Metzler and T. Kanungo, “Machine learned sentence selection strategies

for query-biased summarization,” in SIGIR 2008 Workshop on Learning to
Rank for Information Retrieval, 2008.

[88] T. Minka and S. Robertson, “Selection bias in the LETOR datasets,” in SIGIR
2008 Workshop on Learning to Rank for Information Retrieval, 2008.

[89] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[90] R. Nallapati, “Discriminative models for information retrieval,” in SIGIR

2004, pp. 64–71, 2004.
[91] L. Nie, B. D. Davison, and X. Qi, “Topical link analysis for web search,” in

SIGIR 2006, pp. 91–98, 2006.

References 329

[92] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-
ing: Bringing order to the web,” Technical Report, Stanford Digital Library
Technologies Project, 1998.

[93] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and T. Salakoski, “Learn-
ing to rank with pairwise regularized least-squares,” in SIGIR 2007 Workshop
on Learning to Rank for Information Retrieval, 2007.

[94] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales,” in ACL 2005, pp. 115–124, NJ,
USA: Association for Computational Linguistics Morristown, 2005.

[95] R. L. Plackett, “The analysis of permutations,” Applied Statistics, vol. 24,
pp. 193–202, 1975.

[96] J. M. Ponte and W. B. Croft, “A language modeling approach to information
retrieval,” in SIGIR 1998, pp. 275–281, 1998.

[97] T. Qin, T.-Y. Liu, W. Lai, X.-D. Zhang, D.-S. Wang, and H. Li, “Ranking
with multiple hyperplanes,” in SIGIR 2007, pp. 279–286, 2007.

[98] T. Qin, T.-Y. Liu, and H. Li, “A general approximation framework for direct
optimization of information retrieval measures,” Technical Report, Microsoft
Research, MSR-TR-2008-164, 2008.

[99] T. Qin, T.-Y. Liu, M.-F. Tsai, X.-D. Zhang, and H. Li, “Learning to search web
pages with query-level loss functions,” Technical Report, Microsoft Research,
MSR-TR-2006-156, 2006.

[100] T. Qin, T.-Y. Liu, J. Xu, and H. Li, “How to make LETOR more useful
and reliable,” in SIGIR 2008 Workshop on Learning to Rank for Information
Retrieval, 2008.

[101] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W.-Y. Ma, “A study of relevance
propagation for web search,” in SIGIR 2005, pp. 408–415, 2005.

[102] T. Qin, T.-Y. Liu, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, and H. Li, “Query-
level loss functions for information retrieval,” Information Processing and
Management, vol. 44, pp. 838–855, 2007.

[103] T. Qin, T.-Y. Liu, X.-D. Zhang, D. Wang, and H. Li, “Learning to rank rela-
tional objects and its application to web search,” in WWW 2008, pp. 407–416,
2008.

[104] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and H. Li, “Global ranking using
continuous conditional random fields,” in NIPS 2008, pp. 1281–1288, 2008.

[105] F. Radlinski and T. Joachims, “Query chain: Learning to rank from implicit
feedback,” in KDD 2005, pp. 239–248, 2005.

[106] F. Radlinski and T. Joachims, “Active exploration for learning rankings from
clickthrough data,” in KDD 2007, 2007.

[107] F. Radlinski, R. Kleinberg, and T. Joachims, “Learning diverse rankings with
multi-armed bandits,” in ICML 2008, pp. 784–791, 2008.

[108] S. Rajaram and S. Agarwal, “Generalization bounds for k-partite ranking,”
in NIPS 2005 WorkShop on Learning to Rank, 2005.

[109] L. Rigutini, T. Papini, M. Maggini, and F. Scarselli, “Learning to rank by
a neural-based sorting algorithm,” in SIGIR 2008 Workshop on Learning to
Rank for Information Retrieval, 2008.

[110] S. Robertson and H. Zaragoza, “On rank-based effectiveness measures and
optimization,” Information Retrieval, vol. 10, pp. 321–339, 2007.

330 References

[111] S. E. Robertson, “Overview of the okapi projects,” Journal of Documentation,
vol. 53, pp. 3–7, 1997.

[112] J. J. Rochhio, “Relevance feedback in information retrieval,” The SMART
Retrieval System — Experiments in Automatic Document Processing,
pp. 313–323, 1971.

[113] A. Shakery and C. Zhai, “A probabilistic relevance propagation model for
hypertext retrieval,” in CIKM 2006, pp. 550–558, 2006.

[114] A. Shashua and A. Levin, “Ranking with large margin principles: Two
approaches,” in NIPS 2002, pp. 937–944, 2002.

[115] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[116] A. Singhal, “Modern information retrieval: A brief overview,” IEEE Data
Engineering Bulletin, vol. 24, pp. 35–43, 2001.

[117] T. Tao and C. Zhai, “Regularized estimation of mixture models for robust
pseudo-relevance feedback,” in SIGIR 2006, pp. 162–169, 2006.

[118] T. Tao and C. Zhai, “An exploration of proximity measures in information
retrieval,” in SIGIR 2007, pp. 295–302, 2007.

[119] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “SoftRank: Optimising
non-smooth rank metrics,” in WSDM 2008, pp. 77–86, 2008.

[120] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. J. Burges, “Opti-
misation methods for ranking functions with multiple parameters,” in CIKM
2006, pp. 585–593, 2006.

[121] A. Trotman, “Learning to rank,” Information Retrieval, vol. 8, pp. 359–381,
2005.

[122] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma, “FRank: A ranking
method with fidelity loss,” in SIGIR 2007, pp. 383–390, 2007.

[123] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector
machine learning for interdependent and structured output space,” in ICML
2004, pp. 104–111, 2004.

[124] N. Usunier, M.-R. Amini, and P. Gallinari, “Generalization error bounds for
classifiers trained with interdependent data,” in NIPS 2005, pp. 1369–1376,
2005.

[125] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer, 1995.
[126] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[127] A. Veloso, H. M. de Almeida, M. A. Gonçalves, and W. Meira, Jr., “Learning

to rank at query-time using association rules,” in SIGIR 2008, pp. 267–274,
2008.

[128] W. Xi, J. Lind, and E. Brill, “Learning effective ranking functions for news-
group search,” in SIGIR 2004, pp. 394–401, 2004.

[129] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise approach to
learning to rank — Theorem and algorithm,” in ICML 2008, pp. 1192–1199,
2008.

[130] J. Xu, Y. Cao, H. Li, and M. Zhao, “Ranking definitions with supervised
learning methods,” in WWW 2005, pp. 811–819, New York, NY, USA: ACM
Press, 2005.

[131] J. Xu and H. Li, “AdaRank: A boosting algorithm for information retrieval,”
in SIGIR 2007, pp. 391–398, 2007.

References 331

[132] J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma, “Directly optimizing IR
evaluation measures in learning to rank,” in SIGIR 2008, pp. 107–114, 2008.

[133] G.-R. Xue, Q. Yang, H.-J. Zeng, Y. Yu, and Z. Chen, “Exploiting the hierar-
chical structure for link analysis,” in SIGIR 2005, pp. 186–193, 2005.

[134] J.-Y. Yeh and J.-Y. Lin, and etc, “Learning to rank for information retrieval
using genetic programming,” in SIGIR 2007 Workshop in Learning to Rank
for Information Retrieval, 2007.

[135] H. Yu, “SVM selective sampling for ranking with application to data
retrieval,” in KDD 2005, pp. 354–363, 2005.

[136] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector method
for optimizing average precision,” in SIGIR 2007, pp. 271–278, 2007.

[137] Y. Yue and T. Joachims, “Predicting diverse subsets using structural SVM,”
in ICML 2008, pp. 1224–1231, 2008.

[138] C. Zhai, “Language models,” Foundations and Trends in Information
Retrieval, 2008.

[139] C. Zhai, W. W. Cohen, and J. Lafferty, “Beyond independent relevance: Meth-
ods and evaluation metrics for subtopic retrieval,” in SIGIR 2003, pp. 10–17,
2003.

[140] C. Zhai and J. Lafferty, “Model-based feedback in the language modeling
approach to information retrieval,” in CIKM 2001, pp. 403–410, 2001.

[141] C. Zhai and J. Lafferty, “A risk minimization framework for information
retrieval,” Information Processing and Management, vol. 42, pp. 31–55, 2006.

[142] Z. Zheng, H. Zha, and G. Sun, “Query-level learning to rank using isotonic
regression,” in SIGIR 2008 Workshop on Learning to Rank for Information
Retrieval, 2008.

[143] K. Zhou, G.-R. Xue, H. Zha, and Y. Yu, “Learning to rank with ties,” in
SIGIR 2008, pp. 275–282, 2008.

[144] O. Zoeter, M. Taylor, E. Snelson, J. Guiver, N. Craswell, and M. Szummer,
“A decision theoretic framework for ranking using implicit feedback,” in SIGIR
2008 Workshop on Learning to Rank for Information Retrieval, 2008.

