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ABSTRACT 
Personalization of search results offers the potential for significant 
improvements in Web search. Among the many observable user 
attributes, approximate user location is particularly simple for 
search engines to obtain and allows personalization even for a 
first-time Web search user. However, acting on user location in-
formation is difficult, since few Web documents include an ad-
dress that can be interpreted as constraining the locations where 
the document is relevant. Furthermore, many Web documents – 
such as local news stories, lottery results, and sports team fan 
pages – may not correspond to physical addresses, but the location 
of the user still plays an important role in document relevance. In 
this paper, we show how to infer a more general location rele-
vance which uses not only physical location but a more general 
notion of locations of interest for Web pages.  We compute this 
information using implicit user behavioral data, characterize the 
most location-centric pages, and show how location information 
can be incorporated into Web search ranking. Our results show 
that a substantial fraction of Web search queries can be signifi-
cantly improved by incorporating location-based features. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval 

General Terms 
Algorithms, Measurement. 

Keywords 
Location metadata, personalization, Web search. 

1. INTRODUCTION 
Web search personalization has recently received tremendous 
attention from the information retrieval (IR) research community 
(e.g. [10][21][22][23]). Among the many approaches to personali-
zation, the location of the user has been explored as an implicit 
feature of search queries (e.g. [12]). Based on the user’s location, 
search engines commonly select the preferred language of results, 
adapt suggested spelling corrections, and promote search results 
that are near the user. In particular, location-based personalization 
has the benefit that it does not require the IR system to have con-
structed a model of the user in order to adapt search results. 
___________________ 
 

† Authors are listed in alphabetical order. 

Identifying local search results usually implies that the documents 
being ranked (or, occasionally documents dynamically created to 
represent entities such as restaurants or cinemas) must also be 
associated with a specific geographic location. The distance be-
tween the user’s location and that of this document can then be 
taken as a ranking feature when ordering results. Alternatively, if 
the user provides an explicit location in a query (such as [pizza 
new york]), the location specified in the query provides a refer-
ence point from which locations in documents can be measured. 
We propose to address location-based personalization in a more 
general setting. First, consider the geographic sensitivity of a doc-
ument. Rather than estimating the location of the document from 
document content, we propose to observe the locations of users 
who visit this Web page, similarly to Zhuang et al. [35]. However, 
rather than using this to estimate the geographic sensitivity of the 
query used to reach this document, we simply learn a distribution 
over user locations for each document, in the form of a density 
estimate. This density estimate can then be used to recognize the 
location interest of each document, rather than assuming that each 
document is relevant to a single location defined at some fixed 
level of granularity. This approach is beneficial as not all docu-
ments that relate to a specific location are equally location sensi-
tive. For example, if a user searches for [picturehouse cinema], 
they are likely interested in a cinema with that name that is within 
a short drive of their present location. On the other hand, a user 
who searches for [disneyland] is not necessarily interested in the 
closest Disneyland theme park. We argue that usage statistics, 
rather than locations mentioned in document content, best repre-
sent where a document is most relevant. 
Most importantly, this approach is not limited to Web pages that 
represent clearly localized entities. For instance, consider the 
online local news section of the Los Angeles (LA) Times newspa-
per. As expected, Figure 1c shows that this website is of most 
interest to users located in the greater Los Angeles area. However, 
as shown in Figure 1d, the crossword section of the same newspa-
per website is frequently accessed by users from across the United 
States. This indicates that should a user in Miami issue the query 
[la times], it is relatively more likely that they in fact want the 
crossword section instead of the local news section desired by a 
user in Los Angeles. Even more generally, this geographic distri-
bution can tell us that, for instance, service providers’ websites are 
relevant mostly in the areas which they serve, allowing this ser-
vice area to be directly inferred from usage behavior. For instance, 
we see in Figure 1a that Sarasota Memorial Hospital serves cus-
tomers in all of Florida, while the LA Times reviews and recom-
mendations are most relevant in southern California. 
In this paper, we present our approach using generalized Gaussian 
Expectation Maximization to efficiently learn compact density 
estimates of the distribution of user locations for each relevant 
Web site. We then show how to use the estimates obtained in this 
way for both Web documents and search queries to learn a loca-
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tion-sensitive IR system, demonstrating that this approach can 
produce substantially improved search result rankings. 
We start by presenting related work in depth. Following this, we 
describe the data and algorithm used to estimate the location-
interest distribution for each Web document. We characterize 
particularly location-sensitive Web documents and demonstrate 
that different documents exhibit vastly different location-interest 
properties. Next, we describe how the document density estimates 
can be used to infer the likely relevance of documents in response 
to a query, presenting a learning approach to re-rank documents in 
a location sensitive manner. Finally, our results show that this 
approach leads to substantially improved retrieval quality. 

2. RELATED WORK 
Related work can be grouped into three general areas: (i) research 
on personalization of search results, (ii) geographic information 
retrieval, and (iii) inference of Web page locations from various 
sources such as page content and search engine logs.  
Personalized search leverages information about an individual to 
identify the most relevant search results for that person. A large 
number of personalization techniques have been proposed in IR 
research. Some of these methods reside on the server [10] and 
some on the client [22], some leverage long-term query histories 
[15][23], and some use short-term implicit feedback [20][21]. A 
challenge for personalization, especially at Web scale, is in col-
lecting user profiles that are sufficiently rich to be useful in set-
tings such as result ranking, while balancing privacy concerns. 
One way that an individual’s personalized profile can be aug-
mented is by using data from other people. To better understand 
whether groups of people can be used to benefit personalized 
search, Teevan et al. [25] explored the similarity of query selec-
tion, desktop information, and explicit relevance judgments across 
people grouped in different ways. They found that some group-
ings provide valuable insight into what members consider relevant 
to queries related to the group focus, but that it can be difficult to 
identify valuable groups implicitly. Building on their findings, 
Teevan and colleagues show that ranking Web search results 
based on group leads to a significant relevance gains for group-
relevant queries. Along similar lines, Mei and Church [17] pro-
posed a new way to personalize search through back-off based on 
searcher IP address. They suggest that if there are no relevant data 
for a particular user, then we should back off to increasingly larg-
er classes of similar users. As a proof of concept, they used the 
first few bytes of the IP address to define classes and estimated 
the coefficients of each back-off. In their analysis, Mei and 
Church examined the effects of backing off based on day-of-week 
and time-of-day. Our work differs from these personalization 
methods in that we explicitly use location (rather than implicitly 
via IP address) and personalize based on the location of the search 
results, estimated based on usage patterns. Using our approach we 
can infer that proximal users may have similar information needs. 
Similar functionality can only be obtained via IP address if they 
back-off to similar values, but IP addresses can be widely varying, 
even for proximal users, depending on network connection setup, 
service provider, and similar factors. 
Geographic information retrieval (GIR) addresses the retrieval of 
documents according to geographic criteria of relevance. Previous 
GIR research has addressed problems such as the recognition and 
disambiguation of place references in a text [14], the assignment 
of documents to encompassing geographic scopes [1], or the re-
trieval of documents considering geographic relevance [2]. Van  

Kreveld et al. [27] retrieved documents by creating a linear com-
bination of textual and geographic similarity. Purves et al. [19] 
extracted location information from documents and linearly inter-
polated geographic and text-based retrieval scores in the context 
of free text ranking. GeoCLEF research (e.g., [13]) has used geo-
graphic term expansion on the queries and documents and then 
conventional term matching algorithms on the resulting expanded 
texts. Jones et al. [12] examined the effectiveness of geographic 
features of the document, the query, and the document-query 
combined, and trained a ranker to learn to combine textual and 
geographic similarity features. They trained a relevance model 
with both a content-based ranking algorithm and geo-spatial fea-
tures as inputs, and used the learned weights to predict relevance 
and perform ranking. For queries with explicit place names which 
they could extract and use as the basis for matching to document 
mentions, they found that the minimum distance between the doc-
ument locations and query location is the strongest geographical 
predictor of document relevance, and that combining geographic 
features with text features yields a 5% improvement in relevance 
over using text features alone. Yu and Cai [33] proposed a dynam-
ic document ranking scheme to combine the thematic and geo-
graphic relevance measures on a per-query basis. They used query 
specificity to determine how best to combine different sources of 
ranking evidence for each query, and demonstrated relevance 
gains. Research on spatial diversity [24] provides search results 
that are not only relevant but also spatially diversified so that they 
are from many different locations. The work presented in this 
paper differs from previous work in that we do not mine locations 
from Web page or query content, and do not compute distances 
based on distance estimates between locations in the query and the 
content. Rather, we build location-interest models, That is, models 
of the locations from which users view individual Web docu-
ments. We then personalize based on properties of these models 
and how typical the user’s location is for each search result.  
There has also been work on detecting and using locations in non-
retrieval settings. Mehler et al. used locations mentioned in online 
news articles to detect regional biases toward entities such as 
players in local sports teams and local politicians [16]. Mei et al. 
[18] use the geography of Weblog authors to model spatial pat-
terns of news topics. Zhuang et al. [35] use click information in 
order to determine whether a search query is geo-sensitive, model 
and detect, disambiguate, and visualize the associated geograph-
ical locations. Wang et al. [30] present a method to automatically 
determine the dominant locations of search queries by mining the 
top search results and/or query logs. Wang et al. [28] tackle the 
problem of detecting provider, content, and serving location based 
on content features of Web pages, hyperlinks and queries. In our 
work, rather than modeling locations based on explicit mentions 
of location names in logs, we use implicit location information 
inferred from aggregated locations of users accessing pages. 
It is clear from this section that there is a substantial amount of 
related work in areas similar to that covered by our research. 
However, our work extends previous research in three key ways. 
First, we perform personalization based on location metadata, 
showing how to efficiently and compactly maintain this metadata. 
Second, we use that personalization metadata for the purpose of 
re-ranking search engine results. Finally, we infer our location-
interest models from log data, estimating the location meta-data to 
associate with results based on the aggregated location infor-
mation of those who access the pages, rather than based on con-
tent of the results or the query itself. It is worth noting that alt-
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hough the framework of inferring metadata to improve rankings 
that we present in this paper is focused on the use of locations, it 
generalizes to other problem scenarios where metadata is availa-
ble for documents (e.g., readability levels). 

3. ESTIMATING WEBSITE LOCATION 
SENSITIVITY  
In this section, we present the first stage of our approach, namely 
efficiently estimating a geographic distribution for each website. 
In particular, our approach creates a compact model of the loca-
tions in which each website is likely of interest. In the following 
sections, we will then show how this model can be used for in-
formation retrieval in particular. 

3.1 Data Collection 
The primary source of data for this study is a proprietary data set 
consisting of the anonymized logs of URLs visited by users who 
consented to provide interaction data through a widely-distributed 
Web browser add-on. The data set consists of browsing logs (with 
both Web search and general browsing episodes) consisting of 
tuples including a random user identifier, the time and date, and 
the Web page visited. These data provide us with examples of 
real-world searching behavior that may be useful in understanding 
and modeling location-based search. Further, each user’s IP ad-
dress is resolved into geographic location information for the user 
(i.e., city, state, latitude, and longitude) and this geographic loca-
tion is recorded. All log entries resolving to the same town or city 
were assigned the same latitude and longitude coordinates. To 
remove variability caused by cultural and linguistic variation in 
search behavior, we only include log entries generated by users in 
the English-speaking United States locale.  
The models we construct are based on URL visits during three 
months from July through September 2010. The evaluation results 
described in this paper are based on URL visits during the first 
week of October 2010, representing millions of Web page visits 
from hundreds of thousands of unique users. From these data we 
extracted search sessions on a commercial Web search engine, 
using a session extraction methodology similar to [31]. Search 
sessions begin with a query, occur within the same browser and 
tab instance (to lessen the effect of any multi-tasking that users 
may perform), and terminate following 30 minutes of inactivity. 

3.2 Location-Interest Models 
For each URL with more than 50 visits during the three month 
period used to collect model data, we infer a location-interest 
model (referred to as location model or distribution for brevity). 
This model estimates the probability of the location of the user 
given they view this particular URL. For compactness, instead of 
representing each URL by the particular locations from which it 
was visited, we learn a mixture of Gaussians1 that can be written: 

 (          |     ∑  

 

   

  (         

  ∑
  

(    |  |   
   

 (        
  (     

 

   

 

where      and      are inferred from the data. 
                                                                 
1 For simplicity, capital “P” is used for (continuous) probability 

density functions and (discrete) probability mass functions. 

(a) Sarasota Memorial Health, http://smh.com/ 

(b) Sydney Morning Herald, http://smh.com.au/ 

(c) Los Angeles Times: Reviews and Recommendations 
http://findlocal.latimes.com/ 

(d) Los Angeles Times: Crossword Puzzles and Games 
http://games.latimes.com/ 

 
(e) Background Model 

Figure 1. Example location density estimates. Red indi-
cates higher density, orange and yellow lower density. 
(a), (b): For two results returned for the query [smh]   

(c), (d): For two results returned for the query [la times] 
(e) Population background model. 

 
. 
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Specifically, for a given URL we start with a set of locations {(lat-
itude, longitude)} from which this URL was viewed. To avoid any 
one user having a large impact on the model, only one location 
data point is allowed for each user for each day for each URL. 
Moreover, if a URL has more than 50,000 (user, day) pairs, we 
uniformly subsample 50,000 location samples.  
Using these location data, we learn a density estimate consisting 
of between 5 and 25 Gaussians (depending on the amount of loca-
tion data available for each URL) using Expectation Maximiza-
tion (EM). The EM algorithm specifically adapted to estimating 
general two-dimensional Gaussians is presented in Algorithm 1, 
where   (   is the inner term of  (          |     and   
   . Intuitively, the algorithm iterates between estimating the 
probability that each point belongs to each Gaussian (    , and 
estimating the most likely mean, covariance and weight of each 
Gaussian (        ). The Gaussian locations are initialized at a 
random observed location, with a high initial variance of 50 de-
grees in each direction (about 5,500km). As the algorithm pro-
gresses, each Gaussian tends to narrow and migrate to a high den-
sity area, or broaden to cover a background probability over large 
geographic areas. Examples of the output of the algorithm can be 
seen in Figure 1. 
In addition, when working at Web scale it is essential to minimize 
the size of metadata used for ranking. As such, Algorithm 1 merg-
es Gaussians that are too similar (i.e., those with means that are 
within one degree of each other and with covariance matrices 
which are also very similar), modifying the EM algorithm (by 
setting       instead of the standard value of 1) to encourage 
Gaussians to be nearby in the E step. 
EM exhibits many additional useful properties making it particu-
larly suitable for this setting – such as being efficient at finding a 
reliable density estimate that dynamically adapts the complexity 
of the model to the data. The precise mathematical properties of 
the algorithm are beyond the scope of this paper. We refer the 
reader to [8] for further details of Gaussian EM and [26] for de-
tails about the modification used. 
In addition to learning a density estimate per URL, we also learn a 
general background model describing the density of all users who 
have opted to provide these interaction data. Aggregating the 
location information for all URLs yields the background model 
( (         ). The background model obtained in this way is 
shown in Figure 1e. From the figure, it can be clearly seen that 
this model is reasonably representative of the population 
distribution in the United States. 
Finally, we also learn a location-interest model for each query. 
For each distinct query observed in our data, we take the locations 
of the users who issued this query, and use Algorithm 1 in exactly 
the same way as for URLs. This provides an estimate 
of  (        |      . 

4. LOCATION SENSITIVE FEATURES 
Given the location model generated for each URL, as well as for 
each query and the background model for the entire population, 
we can now leverage these models for personalized search. We 
now describe the features we use to represent geographic locality 
of search results. 

4.1 Non-Contextual Features 
 The first class of features we investigate involve characterizing 
the query and results without considering the specific user. For 

example: Is the query issued location sensitive? Are these URLs 
location sensitive? These are likely to act as indicators as to when 
location should be taken into account by a ranker. 

4.1.1 Features of the URL alone and the query alone 
Let    be the location model for a given URL u, and     be our 
background model. Our URL features include the aggregate popu-
larity of the URL (    , the number of distinct (user, day) pairs 
observed), as well as the overall entropy of the location distribu-
tion and its KL divergence from the background.  
As computing the entropy of a mixture of Gaussians exactly is 
intractable, we computed the entropy by sampling from the loca-
tion distribution of the URL: 

       (         [     ( (   |   )]  〈     ( (   |   〉 

where     is a location drawn from    and 〈 〉 represents an em-
pirical mean of f across many samples. The KL divergence be-
tween the location model for u and the background location model 
is defined as: 

       (                 (   ||    )

  ∫  (   |       [
 (   |   
 (   |   )

]      
   

 

We computed the KL divergence both using sampling for the 
entropy (KLScore-Sam), and using a simple variational upper 
bound (KLScore-Var) [9].  
Finally, we also compute the mean width of each URL model, 
          (  , by sampling from the distribution and compu-
ting the mean distance from the sampled mean of the distribution. 
Figure 1a shows an example of a low width model, and Figure 1b 
shows an example of a high width model.  
The same features were also computed for each query. 

Algorithm 1: Generalized Gaussian EM. 

    
(    (  )

 

∑  (      (  )
 

       

  

1. X Å location data; n Å initial number of Gaussians;  
2. For each Gaussian                                      [Initialize model] 

1.     distinct random point      

2.     [  
  

    ] 

3.     
 
 

3. For iteration = 1 to 10 
1. Until convergence 

1. For every                                                  [E step] 

2. For every    , update parameters concurrently  [M step] 
1.     

∑         

∑       
 

2.     
∑    (    )(    )

 
   

∑       
  

3.     
∑       

| |
 

2. For every                  [Merge near-duplicate Gaussians] 
If   and    are too close, merge   and    
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4.1.2 Features of (URL, query) pair 
We also compute the KL divergence between the URL and query 
location distribution,   (   ||      , again both using sam-
pling and the variational upper bound. Intuitively, if a query and 
URL have a very similar distribution, with low KL divergence, we 
would expect the URL to more likely be relevant to users who 
issue this query. 

4.2 Contextual Features 
Contextual features take into account the user’s particular loca-
tion, and we expect them to be particularly important in personal-
izing search results. We used the following contextual features: 

4.2.1 Features of the user 
The user’s location (latitude, longitude) is included as a feature. 

4.2.2 Features of the (user, URL) pair 
The simplest interesting contextual feature is the probability of the 
user’s location given the URL u,  (   |   , estimated by evalu-
ating the URL location model at the user’s location. We call this 
feature LocUrl. If this user is in a location where this URL is pop-
ular, the feature would be high. 
If the personalization model were a perfect estimator of the loca-
tion distribution of the URL, and location was the only determin-
ing feature (i.e., there were no query), the best we could do would 
be to rank by  ( |    , the probability of the URL u given the 
user’s location. Using Bayes rule, we can estimate this quantity as 
follows: 

 ( |      
 (   |    (  

 (    
 

Given that the ranking task involves ranking URLs for a user in a 
particular location, we can ignore the  (     term.  (   can be 
estimated from the frequency with which this URL was viewed 
overall. Hence, we use: 

      (             (   |    

However, relying on  (   |    for our features suffers from 
every large population center having a higher probability of loca-
tion for all URLs. As such, when training a ranker, this feature 
will always be large when the user is in a high population region, 
and always small otherwise. To obtain more useful ranking 
scores, we also use a normalized probability of location given 
URL, subtracting the background model: 

          (       
      (      

      (               
 

As an illustration of this feature, consider Error! Reference 
source not found.. It shows the NormLocUrl as a function of 
location for two universities both returned for the query UW, 
namely the University of Wyoming, and the University of Wis-
consin. We see that the popularity of the University of Wyoming 
relative to the background frequency is higher over a larger geo-
graphic area than that of the University of Wisconsin. Note that 
higher popularity relative to the background over a large region 
does not necessarily imply greater popularity in terms of number 
of users: the University of Wyoming is popular in less populated 
areas than the University of Wisconsin. 
In addition, we implemented two variants of this feature. The first 
(NormLocUrl-Thresh) thresholds the normalized feature, setting it 
to 1 whenever the above ratio is less than 1, i.e., whenever the 
user location is less likely under the URL model than under the 
background model. This has the effect of emphasizing URLs that 
are more likely for this query. The second variant (NormLocUrl-
Renorm) renormalizes the background model so that it sums to 1 
over the area where  (   |      , for a small    This in effect 
allows the background normalization to only take into account the 
population distribution where this URL has ever been clicked, 
avoiding URLs that are of limited geographical interest having 
feature values much larger than URLs that are of broad geograph-
ical interest. 
Finally, we compute general properties of the URL distribution in 
the context of the user: (1) TotalVolume(u,loc,d), the percent of 
the URL u probability mass within a particular distance d of the 
user location; (2) DistMean(u,loc), the distance from the user’s 
location to the mean of the URL model; (3) PeakDist(u,loc), the 
distance from the user’s location to the nearest individual Gaussi-
an component of the URL model as well as the weight of this 
Gaussian in the model (PeakWeight). These features attempt to 
capture features of the neighborhood of the URL location model 
close to the user. 

4.2.3 Features of the (user, query) pair 
We also computed exactly the same features taking the query 
location model instead of the URL location model, naming them 
equivalently (e.g., LocQuery instead of LocUrl). These represent 
how typical the user location is of this query. 

4.3 Standard Ranking Features 
As our experiments will involve learning a re-ranking of Web 
results that take user location into account, we also incorporate 
relevance of the URL to the user’s query in the form of two sim-
ple features: 
1. The rank of the URL in the non-personalized results returned 

by an underlying ranking function of the Bing search engine. 
2. The score of this (query, URL) pair as produced by Bing 

(monotonically decreasing with the rank of the URL). 

(a) University of Wisconsin homepage 

 
(b) University of Wyoming homepage 

Figure 2. NormLocUrl for two websites as a function of loca-
tion. Green (red) indicates that the URL is more (less) likely 

than predicted by the background (and also non-trivial). 
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5. EXPERIMENTAL METHOD 
Having described our data and features in the preceding sections, 
we now detail the evaluation of our method. We start with an 
analysis of the properties of our dataset, followed by quantitative 
experimentation on learning to rank. 

5.1 Evaluation Dataset Construction 
From the week-long sample of search sessions described in Sec-
tion 3.1, we generate a dataset for our re-ranking experiments. 
The dataset comprises a set of approximately one million queries 
selected uniformly at random from the search sessions. For each 
query, the top ten search results retrieved by the Bing Web search 
engine were included, along with the latitude and longitude of the 
user, any location models available for each of the top ten search 
results, and the location model built for the query, if available. 
For evaluation, we need a personalized relevance judgment for 
each result. Obtaining many relevance judgments from real users 
in a wide range of geographic locations is impractical, and there is 
no known approach to train expert judges to provide reliable loca-
tion-sensitive judgments that reflect real user preferences.  Hence 
we obtained these judgments using a log-based methodology in-
spired by [7]. Specifically, we assign a positive judgment to one 
of the top 10 URLs if it is the last satisfied result click in the ses-
sion. We define a satisfied result click in a similar way to previous 
work [23][29], as either a click followed by no further clicks for 
30 seconds or more, or the last result click in the session. The 
remaining top-ranked URLs receive a negative judgment. This 
gives us one positive judgment and nine negative judgments for 
each of the top-10 URLs for each session. 
The rank position of this single positive judgment is used to eval-
uate retrieval performance before and after re-ranking. Specifical-
ly, we will measure our performance using the inverse of the rank 
of the relevant document, otherwise known as the mean reciprocal 
rank (MRR). Queries for which we cannot assign a positive judg-
ment to any top-10 URL are excluded from the evaluation dataset. 
We also exclude queries for which we cannot assign a location 
model to at least one of the top-10 results (approximately 16% of 
queries were removed in this way), or where one of several high 
precision rich graphical results is shown (for example detailing 
information about a celebrity, corresponding to approximately 2% 
of remaining queries). Note that this means that up to nine of the 
URLs may not have a location model, and thus may have zero 
values for all location features. Additionally, the query may or 
may not have a location model depending on the query frequency 
during the previous three months. 
As the correctness of our evaluation relies on the assumption that 
promoting satisfied click documents improves overall relevance, 
we consider these labels further. Previous work on inferring rele-
vance from clicks has shown that assuming clicks to indicate rele-
vance does provide reliable evaluation metrics (e.g., [29]). Fur-
ther, similar models have also been used to infer relevance direct-
ly from clicks (e.g., [6][34]). Moreover, even if the assumption 
that results lacking satisfied clicks are non-relevant does not hold, 
promoting the satisfied clicked results is still likely to improve 
relevance by displacing higher ranked skipped results, with skip-
ping followed by clicking having been reliably shown to indicate 
that the skipped result is less relevant [11]. More generally our 
labeling method can be considered studying the task of predicting 
only the most relevant item. Furthermore, when we consider all 
satisfied clicks, 97% of the queries in our evaluation set have two 
or fewer satisfied clicks. Thus, considering all satisfied clicks 

does not change a large proportion of the data. Finally, it is also 
worth noting that our approach does not require training data to 
come from documents labeled in this way. If personalized rele-
vance judgments were available, our model could be trained from 
such judgments without any modifications.  

5.2 Labeling Location-Centric Pages 
We next studied our dataset to understand which of the visited 
pages in our sessions are most location centric, and to better un-
derstand the nature of these pages.  
We first ranked all URLs observed in our week-long evaluation 
dataset in descending order based on average log-likelihood of the 
user’s actual location given the URL. After we removed pages 
consisting of search engine result lists and a small number of ob-
viously non-local other URLs (e.g., online gaming sites), the top 
750 remaining URLs were manually labeled by one of the authors 
of this paper, who created a taxonomy to categorize the most loca-
tion-focused URLs based on their subject matter. This process 
involved visiting each URL and assigning it to an existing catego-
ry or creating a new category as appropriate. We iterated and re-
fined the taxonomy, ending up with 56 distinct labels on a broad 
range of location-centric topics ranging from classifieds to educa-
tion. In Figure 3, we show the distribution across the 15 most 
popular categories, capturing 85% of the URLs in the labeled set. 
Remaining URLs were grouped in the category Other. 
The figure shows that Classifieds, News (e.g., online versions of 
local newspapers, local television and radio stations, obituaries), 
and Education (community/technical colleges, school districts, 
smaller universities or outreach campuses of larger universities, 
grade tracking, student portals) are among the most location-
centric URLs. Those labeled as Other in Figure 3 included pages 
associated with Justice (criminal records, court cases, inmate 
searches), Property (appraisals, auditors), Transit (public, traffic, 
tolls), Utilities (power or communication companies) and Gov-
ernment (city or state homepage). It is clear from this analysis that 
 (        |     finds pages with a clear local intent. 
Interestingly, URLs classified as Retail were usually associated 
with items that shoppers would typically be expected to purchase 
in person – such as furnishings, groceries, and medication. Stores 
selling electronics or other items that could easily be obtained 
online did not emerge in our analysis as strongly location centric.  
Also, we observe that knowing the address associated with the 
URL does not always equate to knowing the locations from which 

  
Figure 3. Distribution of topics in most location-centric URLs. 
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people would want to access that URL. One solution to identify-
ing locations from URLs would be to simply extract addresses 
directly from Web page content, and use these to build the loca-
tion model for the page. For example, from parsing Web pages, 
we would establish that the Massachusetts Institute of Technology 
(MIT) is located in Boston, MA. However, that does not tell us 
whether or not only people located in the Boston area would want 
to access the MIT page. The website of the university Boston 
College, which is less than five miles from MIT, has a much dif-
ferent location-interest profile with a much higher proportion of 
visits being from local users rather than distant users. This 
demonstrates the value of our method for inferring location 
metadata for URLs from usage patterns (rather than page content).  

5.3 Learning to Rank 
We next turn to the motivating task of personalizing Web search 
results based on the user location. For all the labeled rankings 
observed during the week of training, we compute all the features 
described in Section 4. From this dataset we then subsampled 
approximately half a million queries by uniformly randomly 
choosing one query per session. This was done to avoid giving 
extra importance to long sessions where the same user location 
would be seen repeatedly. The queries were then partitioned into 
ten parts in order to conduct ten-fold cross validation. For each 
fold, 10% of the training set is used as a validation set for model 
selection. All results presented below are the means of perfor-
mance on the ten folds. 
Using this dataset, we train a ranking model using the Lambda-
MART learning algorithm [32] for re-ranking the top ten results 
of the query. LambdaMART is an extension LambdaRank [3] 
based on boosted decision trees. LambdaMART has recently been 
shown to be one of the best algorithms for learning to rank. In-
deed, an ensemble model in which LambdaMART rankers were 
the key component won Track 1 of the 2010 Yahoo! Learning to 
Rank Challenge [4]. In our experiments, we use LambdaMART 
with 500 decision trees. However, we also note that the choice of 
learning algorithm is not central to this work, and any reasonable 
learning to rank algorithm would likely provide similar results. 
Our baseline is the original ranking of the top-10 provided by the 
Bing search engine, presenting a very competitive baseline. Be-

cause of the proprietary nature of its performance, we do not re-
port absolute MRR, but instead we report the change in MRR 
value in the scale of 0 to 100, i.e., 100 × (   (         
   (         )  

6. RESULTS AND DISCUSSION 
We now present results from our learning experiments, both in 
terms of ranking performance, and analyzing the impact of the 
different classes of features proposed. 

6.1 Ranking Performance 
Table 1 shows the summary results for LambdaMART versus the 
baseline ranker performance. In the first row, we see that the 
learned model improves by 1.9 (on a scale of 0 to 100) over the 
baseline ranker in terms of MRR. All the improvements in the 
table are statistically significant with 95% confidence according to 
the Wilcoxon sign-rank test. The learned model changes the posi-
tion of the relevant item for 16.8% of the queries and improves 
10.4% of the queries. This shows that the location of the user is 
important for a substantial fraction of Web search queries. The 
learned model boosts the position of the relevant item in 61.8% of 
queries where the relevant item’s position changes. On average, 
over the queries where the relevant item shifts, the learned model 
boosts the relevant item by 0.54 positions. In other words, every 
other query experiences an improvement of about one position in 
rank. Given the importance of the first position on user satisfac-
tion, it is worth considering impact on that position separately. 
The learned model moves a relevant item out of position one 2.3% 
of the time and moves a relevant item into position one 4.3% of 
the time. 

6.2 Effect of Query Type 
Next, we break down our results by separating out navigational 
queries. We define navigational queries as queries that are particu-
larly frequent and where one popular URL dominates user clicks. 
In our dataset, 34% of the queries are marked as navigational in 
this way. We find more substantial improvements for navigational 
queries than the remaining queries. This is particularly interesting 
as most clicks on the navigational queries are the same for all 
users, suggesting that some of the improvements are on queries 
issued predominantly in a confined geographic area, where the 
original ranker is not taking this location into account. 
As an example of this, consider the query [rta bus schedule]. In 
our dataset, this query was issued by a user in New Orleans in the 
state of Louisiana. Figure 4 shows the location distribution of this 
query. We see that it is most frequently issued in Southern Cali-
fornia, in Ohio and in Louisiana. The top result returned by the 
baseline system for this query was most relevant in Ohio, as can 
be seen in Figure 5a. However, in this case the user clicked on an 

Table 1. Summary learning results, split between navigational 
and other queries as well as by click entropy (CE). 
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Figure 4. Query location model for the query [rta bus schedule]. 
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appropriate result for Louisiana, with the location model shown in 
Figure 5b. The original ranking for this query, as well as the re-
ranked results produced by our learned model are shown in Table 
2. For each of the original top ten results, we see the URL, our 
estimate of the most relevant location (through manual inspection 
of the page), the approximate location of the largest Gaussian 
peak in the URL model, as well as the distance between the model 
peak and the manually determined URL location. We see that 
overall the URL models reflect the true page location reasonably 
well. In the case of the user in New Orleans, we also see that the 
correct result was moved from position 8 to position 2, resulting 
in a large improvement in the quality of the results for this par-
ticular user. 
Returning to the summary results in Table 1, we show the results 
for navigational and other queries broken down further. In particu-
lar, we study improvements as a function of query click entropy 
(CE) [5] over a sample of queries with sufficient frequency to 
estimate click entropy. This sample constituted 3% of our data. 
The query click entropy measures the distribution of URLs previ-
ously clicked by users, where a high value indicates that many 
different URLs are frequently clicked by different users, while a 
low value indicates that the same URL is clicked reliably. Note 
that the values of click entropy we report have been scaled by a 
factor of 50 to simplify presentation. 
In general, navigational queries are expected to have low click 
entropy as there is usually one destination URL that is clicked by 
most users. A navigational query with high click entropy is likely 
to be affected by user location: the destination URL is different 
for users from different locations, hence different URLs are 
clicked by different users. Thus, one would expect the learned 
model to achieve higher gains for these queries. As expected, we 
see that queries where many different URLs are frequently clicked 
show the largest improvement in performance due to location-
based personalization.  

Considering the click entropy in more detail, Figure 6 shows the 
MRR improvement of the learned model for the same query types 
as a function of click entropy. Overall, the performance numbers 
are higher than for all queries due to this analysis being limited to 
queries with known click entropy. We see that the small fraction 
of navigational queries improve more at all click entropy levels, 
but that click entropy is a good indicator of potential for personal-
ization (as also noted by [5]). However, we also see that even 
queries with little or no variation in the URL clicked (CE ≈ 0) 
benefit from our approach. 
As a further analysis, we measure how often location based per-
sonalization hurts or helps on a per query basis, across all queries. 
Figure 7 shows the number of queries for which the satisfied 
clicked result moved up, or down, by the given number of posi-
tions. We see that ranking changes are most often of one or two 
positions, with improvements substantially more frequent than 
degradation of performance. We also note that results are some-
times promoted by more than 5 positions, moving search results to 
substantially more prominent positions. Such high impact changes 
have a more substantial effect on user satisfaction.  

 
Figure 6. MRR improvement as a function of query click 

entropy for frequent queries. 
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6.3 Feature Analysis 
Next we turn to analysis of the features contributing to the results 
in the previous section.  
In our ranking model, we found that the most important feature is 
the initial rank determined by the original ranking function. This 
may be because the location features do not depend on the match 
between the query and the URL. The second most important fea-
ture is UrlLoc, which estimates the probability of the URL given 
the user’s location. This suggests that the feature is indeed provid-
ing a reasonable estimate of the utility of each URL at each user 
location. We also saw that URL popularity plays a strong role, 
followed by the KL divergence of the URL model from the back-
ground model. This indicates that URLs whose popularity merely 
mirrors the background distribution are less likely to be good 
candidates for promotion or demotion based on user location. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented an approach for inferring the locations 
of interest for URLs based on user browsing behavior. We 
showed that these models are more informative than content 
alone. We showed how locations can be efficiently encoded as a 
Gaussian model describing the probability of the location given a 
URL, and further how this basic model can be transformed into a 
number of informative features. We demonstrated that these fea-
tures allow location based personalization of search results, lead-
ing to significant gains in offline evaluation, changing the position 
of the relevant item in 16.8% of the queries, improving it for 
10.4% of queries, and improving overall MRR by 1.9%. 
Natural next steps include a comparison with content-based meth-
ods, and further validation of our approach in an online setting by 
dynamically re-ranking search results, and evaluating with an 
appropriate online metric. Additionally, although 84% of queries 

return results where at least one in the top-10 has a location mod-
el, smoothing approaches could allow location information to be 
shared between related URLs and allow this approach to be ex-
tended to URLs which are visited less frequently or are entirely 
new. However, this work also suggests broader applications. Lo-
cation-based personalization is applicable beyond standard Web 
search, also encompassing advertising, product recommendation, 
and social networking. Similar models can also be constructed of 
locations of interest to individual user or specific user cohorts. 
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