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Images contained in scientific publications are widely
considered useful for educational and research pur-
poses, and their accurate indexing is critical for efficient
and effective retrieval. Such image retrieval is compli-
cated by the fact that figures in the scientific literature
often combine multiple individual subfigures (panels).
Multipanel figures are in fact the predominant pattern in
certain types of scientific publications.

The goal of this work is to automatically segment
multipanel figures—a necessary step for automatic
semantic indexing and in the development of image
retrieval systems targeting the scientific literature. We
have developed a method that uses the image content as
well as the associated figure caption to: (1) automati-
cally detect panel boundaries; (2) detect panel labels in
the images and convert them to text; and (3) detect the
labels and textual descriptions of each panel within the
captions. Our approach combines the output of image-
content and text-based processing steps to split the
multipanel figures into individual subfigures and assign
to each subfigure its corresponding section of the
caption. The developed system achieved precision of
81% and recall of 73% on the task of automatic segmen-
tation of multipanel figures.

Background

The amount of information in digital image form is ever-
increasing because of technological advances and various
socio-economic factors. This growth is particularly mani-
fested in the scientific and medical domains. In the clinical
domain, for example, Aucar, Fernandez, and Wagner-Mann
(2007) report a trend of an increasing use of medical images.

They examined medical images associated with trauma
patients over a period of 4 years and observed that the
number of radiographic studies increased by 82% during
this time. Images are also abundantly used in scientific pub-
lications, particularly in the biomedical literature. The mean
number of images per article in the leading biological jour-
nals ranges from 6.5 (Yu, 2006) to 31 (Cooper et al., 2004).

With the proliferation of digital images comes the need to
organize and easily retrieve image data. Easy access to the
scientific journal-article components such as tables and
figures greatly enhances the search experience of research-
ers and educators (Sandusky and Tenopir, 2008; Divoli
Wooldridge, & Hearst, 2010). Image retrieval techniques are
therefore an active research field. Datta, Joshi, Li, and Wang
(2008) observe that the image retrieval field has grown tre-
mendously since 2000 both in terms of researchers involved
and papers published. The authors of the study searched for
publications containing the phrase “Image Retrieval” for
each year from 1995 to 2005. The results show a roughly
exponential growth in interest in image retrieval and closely
related topics during that period.

The interest in image retrieval and semantic image index-
ing is also manifested by the Image Retrieval Track of the
Cross Language Evaluation Forum (ImageCLEF1) estab-
lished in 2003. The goal of ImageCLEF is to create an
evaluation platform and to further research on cross lan-
guage image retrieval. The forum attracts a large number of
participants. For example, in 2010 a record number of 112
research groups registered for the four subtasks of the 2010
ImageCLEF (Müller et al., 2010).

Within the general field of image retrieval, the retrieval of
images from the scientific literature has prompted avid inter-
est. Images retrieved from scientific literature are a useful
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educational and research tool and their accurate semantic
indexing is of significant research interest. Such indexing of
images in the biomedical literature will help to address the
heterogeneous requirements and searching methods of the
intended users: patients and their families looking for expla-
nations; students seeking additional information for their
studies; and clinicians who need images for a variety of
retrieval tasks. For example, the tasks that prompt clinicians
to search for images include: patient education (“showing
a patient what I mean with a picture”); comparison or
confirmation of a diagnosis; educational and scientific pre-
sentations; and self-education (Kalpathy-Cramer, 2011).
The searching methods could range from submitting a
sample image to using sophisticated filters and Boolean
operators made possible by the meta-annotation of the bio-
medical bibliographic citations provided by the NLM2

indexers.
Images in scientific publications have some unique char-

acteristics that distinguish the image retrieval task from the
task of retrieval of general purpose images. One such
distinction is the presence of detailed and reliable text
descriptions of images in scientific publications (figure cap-
tions and the text within the article that refers to the figures,
i.e., “mentions”). This text is often used to provide reliable
semantic annotation of the image for indexing and retrieval
(Xu, McCusker, & Krauthammer, 2008; You, Antani,

Demner-Fushman, Rahman, Govindaraju, & Thoma, 2010;
Simpson, Demner-Fushman, & Thoma, 2010). Scientific
publications are also characterized by the abundance of
figures consisting of multiple individual panels (subfigures).
Multipanel figures are very useful in illustrating complex
phenomena and providing comparisons. For example,
medical findings are often depicted by multiple panels
presenting various image slices, imaging modalities, or
comparison images. Figure 1 shows a multipanel figure and
its caption.

Multipanel figures are in fact the predominant pattern in
certain types of scientific publications. For example, 53% of
2,422 images randomly selected from the 2011 ImageCLEF
medical retrieval track3 data set (comprised of articles pub-
lished in 3,277 biomedical journals) were multipanel figures
similar to the example in Figure 1.

Although multipanel figures are an accepted and useful
tool in journal publications, they do pose a challenge
for image retrieval systems. Even though multiple
panels combined in a single figure are related in the context
of the publication, they may represent distinct entities
for semantic image indexing and retrieval, in addition
to presenting problems for image content indexing. Thus
an image retrieval system needs to separate and distin-
guish between multiple images present in a single
figure.

2US National Library of Medicine, National Institutes of Health 3http://www.imageclef.org/2011/medical

FIG. 1. A sample multipanel figure consisting of four subfigures with panel labels in the upper right corners. The figure caption consists of a
correspondingly labeled list of subcaptions.
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Purpose

This work presents a method and a system for automatic
segmentation of multipanel figures typically present in
scientific publications. The procedure involves segmenting
both the figure caption and the actual image content (i.e.,
finding panel boundaries). Such segmentation will facilitate
the accurate automatic semantic indexing and retrieval of
images from scientific publications.

Given a figure and its associated caption, our panel seg-
mentation system determines if the figure consists of mul-
tiple panels and, if so, separates the panels and segments the
caption. Figure 2 shows a single panel from the output of the
system applied to the multipanel figure shown in Figure 1
that consists of four subfigures. Each panel in Figure 1 has
an associated panel label (A, B, C, or D) that is indepen-
dently detected both in the figure caption (text-based
processing) and in the image (image-based processing). In
addition, the caption is segmented into text snippets appli-
cable to specific panels. The resulting image panels and the
associated caption segments serve as input to our multi-
modal biomedical information retrieval system (Demner-
Fushman, Antani, Simpson, & Thoma, 2012).

Related Work

The individual image and text processing methods that
we apply for panel and caption segmentation and image
label recognition are fairly well known. The contributions of
our work are: (1) the identification of a novel problem; (2)
the algorithm that combines the suggestions of the basic text
and image processing methods in a way that improves the
overall system performance; and (3) the evaluation of feasi-
bility of the proposed automated multipanel figure segmen-
tation solution. Below, we describe some representative
work in related areas of text and image processing and
reference the relevant review literature for additional details.

Image Processing

In general, image segmentation is a very vast area of
research and methods need to be carefully selected or devel-
oped based on the type of image and desired goal at hand.
In our approach, several fundamental image processing
methods were used to segment multipanel figures, and are
described in the following sections. As such, these methods
are fairly generalizable and applicable in a wide variety of
image processing applications. We refer the reader to stan-
dard image processing texts such as (Gonzalez & Woods,
2008), (Sonka, Hlavac, & Boyle, 2007), and (Russ, 1994)
for a broad but useful description of segmentation methods.

Image Text OCR

Once the panels are segmented from the figure, any
graphical overlays (panel labels and other markup) need to
be extracted and recognized using Optical Character Recog-
nition (OCR: the field of recognizing image pixels that are in
fact characters). As with image segmentation, there are
many methods that have been developed over the decades
for this problem. The OCR methods are reviewed in
Plamondon and Srihari (2000).

Text Processing

Extraction of labels from the caption text is a specific and
relatively simple instance of the information extraction
research. For a review of the latest developments in infor-
mation extraction in the biomedical domain see Simpson
and Demner-Fushman (2012). Label extraction could also
be viewed as a form of “understanding” the figure captions.
The levels of understanding range from extracting the struc-
ture of the caption (i.e., label extraction) to identifying the
regions of interest shown in the image and described in the
caption and the relations between them. Similarly to our

FIG. 2. A sample single-panel output of the panel segmentation system. The four-panel figure in Figure 1 was split into four output entities, each consisting
of: (1) a panel label; (2) the segment of the image containing the corresponding label and delimited by the panel boundaries, and (3) the corresponding
description extracted from the figure caption.
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task, Cohen, Wang, & Murphy (2003) focused on extracting
image labels and then classified the labels into three classes
according to their linguistic function: (1) as indicators of a
bulleted list; (2) as proper nouns, for example, in “..a pro-
cedure used in (A);” and (3) as references interspersed with
the text. Note that our task is limited to extracting only the
indicators of bulleted lists. For that task, Cohen et al. found
the rule-based methods (that are similar to our rules
described in the section Method) to have high precision
(98.0%) but only moderate recall (74.5%). Despite the simi-
larity of the task and methods, the results of our caption
segmentation module cannot be directly compared, because
we are interested in finding and classifying only the subcap-
tion labels.

Method

Our multipanel figure segmentation procedure involves
five distinct submodules: two text-based and two image-
based processing modules, and a module that combines
the outputs of the previous processing steps. The five
submodules are described below.

1. Text label extraction: the goal of this module is to identify
panel labels present in the figure caption.

2. Panel subcaption extraction: the goal of this module is to
identify the individual panel descriptions within the figure
caption.

3. Image panel segmentation: the module uses image pixel
data to identify panel boundaries.

4. Image label extraction: the module uses image pixel data
to identify labels present in the individual panels.

5. Panel splitting: the module combines the outputs of
the text label extraction, image panel segmentation, and
image label extraction modules to split and name
individual subfigures.

Methods used for each of the individual system subtasks
are described in detail next.

Text Label Extraction

The goal of the text label extraction module is to identify
references to panel labels in the associated figure caption.
For example, given the caption snippet shown below, the
task of the text label extraction module is to identify the
panel labels “A” and “B.”

(A) Endoscopy reveals a protruding tumor with a central
ulceration at the great curvature extending from the
low body to antrum of the stomach. (B) Abdominal CT
shows . . . . . .

In addition to detecting all references of panel labels
within the caption, the module also expands label sequences
and ranges. For example, the module has the task of expand-
ing labels such as “(a, b, c-f)” to their full label list:
“a,b,c,d,e,f.”

The text label detection task lends itself well to a rule-
based approach. Even though a number of label inconsisten-

cies and ambiguities were observed, the rule-based approach
produced satisfactory results (see section Results).

In our approach, label candidates are identified through
common label patterns and delimiters. These patterns
and delimiters are encoded as regular expressions. For
example, one of the identified patterns matches a single
alphanumeric character (followed by an optional digit)
surrounded by parenthesis or followed by a colon (e.g.,
“(a1)”, “A:”, “1:”). Several similar patterns (regular
expressions) were created and used to identify sets of label
candidates.

In the next step, label expansion rules are applied to
each label candidate identified in the previous step. For
example, label ranges such as “(a-c)” are expanded to their
full label set “a,b, c.” Similarly, label sequences (labels
separated by commas or conjunction) are normalized, for
example, the candidate “a,b, and c” is normalized to the
label set: “a,b,c.”

Lastly, the module applies a set of filters to eliminate
false positive candidates. For examples, labels that are out of
numeric or alphabetic range of a sequence (e.g., “a, b, p, c,”
“1, 2, 10”) or label candidates surrounded by mathematical
or statistical notations are removed from the final label list
(e.g., “� 1,” “p � ”).

Panel Subcaption Extraction

The goal of the panel subcaption extraction module is to
correctly identify portions of the caption text pertaining to a
particular panel. For example, text relevant to panel labeled
“A” in the figure caption below is shown in bold: the
description of panel “A” consists of the first sentence (refer-
ring to both panels “A” and “B”) and the second sentence
(describing panel “A” only).

Radiographs performed after closed reduction. (A)
Anteroposterior view showing incongruity of the elbow
joint. (B) Lateral view. A bone fragment is clearly identified
into the joint.

In our approach, extraction of text relevant to a particular
panel also relies on a set of hand-crafted rules. First, the
module classifies the label sets (extracted by the text label
extraction module) into labels preceding the panel descrip-
tions (e.g., A: . . .) or following the description (e.g., . . . .
(A)). Then, the module applies rules for identifying the
scope of each panel description. An example of a panel
scope detection rule is shown below:

The scope of a subcaption that follows the panel text
label is the caption text from the current label until the next
label.

For example, the detected scope of the description of
panel “A” is shown in bold: “. . . . A: Anteroposterior view
showing incongruity of the elbow joint. B: . . . . . .”.

Image Panel Segmentation

The goal of the image panel segmentation module is to
find the boundaries of individual panels in a multipanel
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figure and split out the individual panels. Figure 3 shows
examples of various single and multipanel figures present in
the data set.

As illustrated by the examples shown in Figure 3, the
major challenge in the image panel segmentation task is the

large variety across the data set. For example, the color of
the figure background, the layout and size of individual
panels, and the image resolutions could vary significantly
across figures. In some cases, there is no clear panel bound-
ary, or the width of the panel boundary is very small (only a

FIG. 3. Sample single- and multipanel figures in the data set. Visual characteristics (color, layout, overlay markup, etc.) for each are discussed in the article
text with respect to their effect on the image processing methods. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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few pixels). In addition, panel labels, text overlays or visual
markers (such as arrows) placed in the vicinity of the panel
boundaries could interfere with the panel segmentation
procedure. To address these challenges, we developed
an approach based on the observation that in the majority
of multipanel figures, individual panels are separated by
homogenous horizontal or vertical crossing regions (bands)
of uniform color (Cheng, Antani, Stanley, Demner-
Fushman, & Thoma, 2011). The systematic errors of this
algorithm and the proposed solutions will be discussed in
section Results.

Figure 4 summarizes the image panel segmentation pro-
cedure. Our algorithm performs two iterations (shown by
solid and dashed arrows in Figure 4) of five major steps: (1)
image overlay/markup removal; (2) homogenous crossing
band extraction; (3) border band (homogenous band that is
located on the boundary of the panel) identification; (4) low
gradient band (a band that does not have a sharp boundary
line) removal; and (5) image division based on crossing
bands. The second iteration is needed for the irregular grid
layout. For example, extraction of homogenous bands that
cross the entire image will divide Figure 3(f) into three sub-
images, each of which is also a multipanel figure that needs
to be split further. Each of these subimages is divided into
subfigures by the homogenous bands that cross the entire
subimage and are similar to the homogenous bands
extracted in the first iteration of the algorithm. We will first
describe each of the five major steps individually and then
explain the flow.

Image markup removal. The removal of the image markup
(such as text) in the areas surrounding potential panels facili-
tates extraction of the homogenous crossing bands. As
shown in Figure 3(b), markup may hinder detection of the
crossing areas that separate panels. The markup outside of
the panels is typically contained in small isolated regions.
We replace these small regions with the surrounding back-
ground color as follows:

a. Get the bounding box of each connected component (CC: a
blob of black or white pixels) in the binary edge map
obtained using the Sobel filter (Gonzalez & Woods, 2008);

b. Remove bounding boxes enclosed by the larger bounding
boxes and then merge the overlapping bounding boxes;

c. For each small-area bounding box (with the area less than
10% of the area of the largest bounding box in the image),
replace the intensity of all the pixels in the bounding box
with the average intensity of the pixels located on the lines
that enclose the bounding box.

Homogenous crossing band extraction. The goal of this
step is to extract the homogenous bands that cross the entire
image horizontally or vertically. The method computes the
variance and mean of the pixel intensity on each horizontal
and vertical line. Most often, the homogenous bands have
high intensity (figures on white paper). Therefore, we try to
extract bright homogenous bands first. That is, the lines with
intensity variance under an empirically established threshold
(15) and intensity mean above the threshold (200) are iden-
tified and merged into a rectangle band if the distance
between those lines is small (less than 5% of the image
width or height). If no bands are extracted in the first step,
only the intensity variance of each line is considered. That
is, we identify and merge the low variance lines.

Border band identification. The goal of this step is to deter-
mine which of the homogenous crossing bands obtained in
Step 2 are located close to the image border. For example,
the gray image border in Figure 3(a) and the white image
border in Figure 3(c) need to be removed for panel extrac-
tion. Similarly, in Figure 3(g) the subimage containing panel
A extracted in the first iteration (solid arrow path) includes
the white space below the panel A. The white space is a
border band for the subimage. Likewise, the white space in
Figure 3(e) is also identified as a border band.

Low gradient band removal. The goal of this step is to
filter out the crossing bands that do not represent panel

FIG. 4. Process diagram describing the image panel segmentation procedure.
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boundaries. Using the binary edge map obtained in the
markup removal step, the procedure examines the longest
edge of each of the crossing bands. The band is removed if
the longest edge is too short compared to the corresponding
image dimension, or the ratio between the length of the
longest edge and the corresponding image dimension is too
small.

Image division based on crossing bands. In this final step,
the images are either classified as single-panel images or
divided into subimages using the coordinates of the
extracted horizontal and vertical crossing bands. An input
image is classified as a single-panel figure, if no homoge-
neous crossing bands are identified in the second step or
remain after the fourth step. Otherwise, the algorithm
outputs the number of individual panels and their coordi-
nates obtained using the locations of the homogeneous
crossing bands in the image.

Image Label Extraction

The goal of the image label extraction module is to detect
panel labels superimposed on each individual panel of mul-
tipanel figures. Several image processing and optical char-
acter recognition (OCR) techniques are used to segment
panel label connected components (CCs) and recognize
them. The module output consists of the recognized panel
labels (e.g., A, B, a, b, etc.) together with their location
within the entire multipanel figure. The image label extrac-
tion algorithm performs three steps that are described below:
(1) image preprocessing; (2) OCR; and (3) panel label
detection.

Image preprocessing (binarization). In the preprocessing
step an input image is binarized (each pixel is stored as
either black or white) to extract character CCs. We observed
that panel labels in the data set are usually black or white and
hence a binarization-based method is sufficient to segment
overlay characters. Two empirically established fixed
threshold values (50 and 200) are used to extract black and
white characters, respectively. A threshold of 128 and an
adaptive thresholding method4 are applied for characters
colored other than black or white (e.g., intensities between
50 and 200). Figure 5(b) shows the binarization result of the
input image shown in Figure 5(a). The result was obtained
by first thresholding the input at 200 and then taking the
negative of the binarized image to segment black CCs of
white panel labels.

Image text recognition. The goal of this step is character
recognition. We tested publicly available OCR tools and
determined that the standard OCR tools are not well-suited
for our task. We therefore developed an alphanumeric OCR
engine based on contour features and neural network (NN)
theory (You, Antani, Demner-Fushman, Govindaraju, &

Thoma, 2011). The average recognition rate of this approach
(measured on a test set consisting of more than 66,700
character samples extracted from biomedical images) is
close to 99%. Each black CC identified in the previous step
is processed by the OCR engine that outputs a recognition
result (character label) and a score. Figure 5(b) shows the
OCR results next to the corresponding CCs.

Panel label detection. As shown in Figure 5(b), the OCR
results include true panel labels, as well as multiple false
positive characters. A method for detecting true panel labels
(i.e., A~F) in the OCR output is necessary. We apply the
Markov Random Field (MRF) modeling approach (Li,
2009) for this detection task based on the following charac-
teristics of the panel labels:

Alignment: panel labels are aligned horizontally or vertically. For
example, in Figure 5(a), panel labels A, B, and C are aligned hori-
zontally, while A and D are aligned vertically. They are marked by
dashed and solid narrow rectangles, respectively.
Order: panel labels are ordered alphabetically from left to right
and/or top to bottom.
Size: the sizes of CCs of panel labels are very close.

The characteristics and relationships among panel labels
are modeled using MRF to classify each OCR-ed CC as a
true panel label or noise (You et al., 2011). Characters that
satisfy the characteristics and relationships compose a can-
didate label set and several candidate sets are obtained as a
result of the MRF modeling. Figures 5(c) shows two candi-
date sets. Both consist of characters that satisfy the charac-
teristics. It is difficult to determine the true candidate set
only from the MRF results. Characters in the false positive
set shown in the dotted box in Figure 5(c) are also appar-
ently good candidates for true panel labels (e.g., for a three-
panel figure). Other results such as text labels and image
panel boundaries help selecting the true label set.

Panel Splitting

The goal of the panel splitting task is to combine the
results of the (1) text label extraction; (2) image panel seg-
mentation; and (3) image label extraction to split out and
name the individual subfigures. We observed that the three
results agree and successfully split the figures only for about
30% of the multipanel figures. Here “agree” means that all
panel labels and borders are accurately extracted by the three
detection algorithms. For example, for the image shown in
Figure 5(a) the three results would be in agreement only if
the following three conditions are met: (1) the text label
extraction module finds all panel labels A, B, C, D, E, and F;
(2) the image panel detection module delineates all bound-
aries of the six panels; and (3) all image labels (A~F) are
correctly recognized and located. The three results fre-
quently disagree and hence need to be combined and
adjusted for successful panel splitting. To that end, we first
combine text labels and image labels, and then match the
panel labels with the extracted subpanels.4http://www.xdp.it/cximage.htm
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Combining text and image labels. The text label extraction
and image label extraction produce the same type of infor-
mation: character panel labels that can be combined into a
single-panel label set. Text labels could be useful for filter-
ing out false positive candidate sets obtained by the image
label extraction module. Because either or both results could
be imperfect, we select panel labels that are found in both
results. We consider such panel labels highly probable.
Figure 6(a) shows an example in which both module results
have some missing labels. The text label extraction module
detected labels a, b, c, d, e, f, and g (white overlaid letters in
panel a) but missed labels h and i. The image label extraction
module, on the other hand, detected labels a, b, d, e, and g
(white overlaid letters below each panel label) but missed
four labels (c, f, h, and i). Hence only labels a, b, d, e, and g
are considered panel labels. This AND selection operation
may cause labels accurately detected by one module (but not
by both) to be excluded from the final output (e.g., labels c
and f). However, it can successfully eliminate noisy labels

erroneously detected by either module (e.g., labels f, m, and
v in the text label extraction result from Figure 6(b)).

Combining panel labels with image panels. Panel labels
(combined text and image labels) are now available to be
assigned to the extracted panels (subfigures). Each panel
should be named by its corresponding panel label found
within or near the panel. Panels that are not properly split by
the image panel segmentation module and hence form a
super panel could be split and named successfully using the
corresponding panel labels. This label-based splitting is pos-
sible because of the regularities in the label layout and
assignment: (1) labels are usually located at the top or
bottom corners (and sometimes at the center) of each panel,
and (2) panel labels and subfigures are arranged from left to
right and/or top to bottom. Both Figures 6(a) and 6(b)
present left to right and top to bottom order of the subfigures
and labels are placed at the top-left corners. Sometimes
labels are placed outside of their panels (e.g., labels F and J

FIG. 5. Output from various image processing steps in the image panel label detection process. (a) Input multipanel figure showing vertical and horizontal
alignment of panel labels. (b) Image binarization result for image in subfigure (a) and OCR-ed letter labels. (c) Output of the panel label detection step
showing a true panel label set (marked by a box with solid line) and a false positive (marked by a box with dashed line).
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in Figure 6(b)). However, the location of the labels is at the
top-left corner, similarly to the rest of the labels. The final
panel splitting method is implemented based on the above
two panel label patterns and consists of three steps.

Step 1: Splitting panels containing multiple labels. The
image panel segmentation module sometimes fails to detect
panel boundaries and split out the subfigures. Figure 7(a)
shows a multipanel figure where the algorithm failed
because of the absence of clear panel boundaries. The panel
labels, however, were successfully detected in terms of char-
acters and their locations. In this case, the super panel can be
split based on the panel labels and their arrangement pattern.
Panel labels are assigned from left to right and from top to
bottom, and they are located at the bottom-left corner. The
space margin between a label (e.g., A or C) and the left panel
border can be easily computed, and the margin can be placed
to the left of each label (B and D) to determine their left
panel border. Similarly, the bottom margin can be computed
using labels C or D and the bottom border of the super panel.
The margin offset is then used to determine the bottom
border of panels A and B. The newly inferred borders may
not be as accurate as the visually observed borders between
the panels, however, they are fairly acceptable in this case
and other similar cases in which all panel labels are located
uniformly within each subfigure. Figure 7(b) shows such
inferred segmentation results.

Step 2: Matching single labels within or outside of their
panel borders. After completion of Step 1, it can be
assumed that each panel has one label or none (depending on
the label extraction results). Panel labels may be located in
or out of detected panel borders (Figure 8(a)). For certain
subfigures, however, there may be no detected labels (e.g.,
A, D, E, G, and H in Figure 8(b)). In this step, panels with
labels detected within or outside of their borders are split
and named. The algorithm first examines panels with a
single label in them and then identifies the location pattern
of the labels in the panels. The location pattern is used to
search for labels that are located outside of the correspond-
ing panels. For the detection results in Figure 8(a), for
example, we split and named panels B, D, and F first. Then
a label location pattern, that is, top-left corner, was detected
in these panels and used to match labels A, C, and E to their
panels. Panels F and J and their labels in Figure 6(b) were
also successfully matched because their labels are near the
top-left corner of the panels.

Step 3: Assign labels to panels with no available
label. Panels with available labels are successfully split
and named in the first two steps. In Step 3, panels with-
out available labels are processed based on their panel
arrangement pattern. The pattern is determined using the
panels successfully split in the two prior steps, and a missing
label is assigned based on the pattern and neighboring panel

FIG. 6. Example images with missing or noisy panel label detection. Such errors can affect the process for combining text and image labels. (a) Labels
missed by both text and image processing. Text processing extracted labels a through g (shown in white in top left subfigure) and image processing extracted
labels a, b, d, e, and g (shown in white below the panel labels). (b) Extraneous labels identified by text processing (shown above the image) were removed
because of accurate image processing.
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labels. For example, in Figure 8(b), the three labels B, C, and
F are sufficient to detect a left to right order of panels in a
row and a top to bottom order between the two rows. Then
the missing labels A, D, E, G, and H can be easily assigned
to their corresponding panels. If the extracted labels are not
sufficient for detecting a pattern, the default arrangement
pattern (left to right and/or top to bottom) and the default

labels (upper case letters) are applied. Figure 9 summarizes
the multistep panel segmentation approach.

Data Set

The data set used for multipanel figure analysis and
evaluation of the extraction methods consists of 2,348

FIG. 7. In spite of one algorithm failing, if two of three algorithms agree a successful panel splitting may still be achieved. Figure shows illustrations of
successful splitting from imperfect results. Image in (a) with indistinct panel boundaries, but with successful text and image panel label recognition, results
of a successful panel splitting shown in (b).

FIG. 8. (a) Example showing correct panel segmentation in spite of unusual panel label location affecting image-based recognition. (b) In spite of
incomplete image processing-based panel label recognition, panel layout clues enable correct panel segmentation.
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images and their captions extracted from scientific
publications in the biomedical domain and the life sciences.
This is a subset of the data provided by the medical retrieval
track of ImageCLEF20115 containing 231,000 images taken
from the Open Access subset of PubMed Central.6

Evaluation data sets (a total of 400 images and their
associated captions) were created for each of the tasks
described in section Method: the two text-based, two image-
based tasks, and the final panel splitting task. Two indepen-
dent annotators (a biomedical informatition and a medical
student) annotated both the image and the associated figure
caption following a set of predefined guidelines. The anno-
tation procedure was based on the Delphi communication
method (Linstone & Turoff, 1976). A procedure for modifi-
cation and refinement of the annotation guidelines was
established and followed. Annotator disagreement was
resolved via an adjudication procedure, in which the two
annotators were joined by a physician trained in medical
informatics. Most disagreements were because of the differ-
ences in the boundaries annotations. For example, one of the
annotators would accidentally include punctuation adjacent
to a label while annotating labels in the captions. Such
disagreements were easily reconciled. An annotated refer-
ence set was created from the consensus of both annotators.

A custom Web-based annotation tool was developed for
the text-based annotation tasks-text panel label and panel
description annotations as shown in Figure 10. The LabelMe
(Russell, Torralba, Murphy, & Freeman, 2008) Web-based
annotation tool was utilized for the image-based annotation
tasks: subfigure segmentation and panel label annotation.
Figure 11 illustrates the image-based annotation process.

The annotators achieved high interannotator agreement
demonstrating the successful guidelines and annotation

procedures. Cohen’s kappa of 0.80 was measured on the
label annotation task, and of 0.78 on the panel description
annotation task.

Results

The text and image-based modules were independently
evaluated using the annotated reference set. Table 1
shows the results for the text-based modules: text label
extraction and panel description extraction. Results vary
from an F1-score of 72.7% to 74.7% on the task of
text-based panel label detection using exact and inexact
boundaries, respectively. The results of the panel descrip-
tion extraction vary more widely with an F1-score of
65.4% using exact boundaries and 83.6% using inexact
boundaries.

Table 2 shows the results of the image panel segmenta-
tion module.

To evaluate the image panel segmentation, we consider
each panel individually and use the precision and recall
measures with nonexact panel boundaries. An extracted
panel is considered “true positive” if it satisfies the follow-
ing two criteria:

1) The overlapping area between the extracted panel and the
matching reference set panel is larger than 75% of the
area of the reference set panel;

2) The overlapping area between the extracted panel and a
reference set panel adjacent to the matching reference set
panel is less than 5% of the area of the adjacent panel.

The 400 test images contain 1,764 reference set panels.
The image panel segmentation module extracted 1,482
panels, of which 1,276 were correct, leading to precision of
86.1% and recall of 72.3%. Under-segmentation accounts
for the majority of failures in the images that do not contain
homogeneous crossing bands, whereas over-segmentation
occurs in the images in which homogenous crossing bands
do not delimit subfigures. We plan to use the image label
information to reduce segmentation errors.

For evaluation of the image label extraction, we first ran
the algorithm on the test set and then compared the extracted
panel labels with the reference annotation.

Recall and precision of 70.6% and 97.3%, respectively
(shown in Table 3) were achieved on the detected label sets
retained after filtering based on the text extraction infor-
mation. In addition, we evaluated the number of images in
which more than 50% of panel labels were successfully
detected. As shown in section Method, it is not always
necessary to detect all panel labels for successful final
panel extraction and labeling. Our algorithm detected more
than 50% of panel labels in 85.3% of the test images (341
images out of 400); however, it detected no labels in 7.0%
(28 images) of the test set. Error analysis revealed that
the main causes of undetected labels are 1) low image
resolution/quality and 2) irregular alignment of panel
labels.

5http://www.imageclef.org/2011/medical
6http://www.ncbi.nlm.nih.gov/pmc/

FIG. 9. Process diagram showing contribution of each step to the
multipanel figure segmentation algorithm.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2013 903
DOI: 10.1002/asi



Overall Evaluation of the Panel Splitting Algorithm

In addition to evaluating the performance of individual
system modules, we evaluated the overall performance of
the developed system. The combined panel splitting

algorithm was evaluated in realistic and simulated oracle
conditions. First, all actual results from the three extraction
modules (text label extraction, image panel segmentation,
and image label extraction) were used as input to the panel
splitting algorithm, and the results (extracted panels and

FIG. 10. A screenshot showing the custom Web-based annotation tool for text-based panel label and description annotation. In the interface, annotators are
shown an image and its caption and are asked to annotate in the caption the panel labels and their associated descriptions.

FIG. 11. A screenshot showing the image-based annotation process. The LabelMe tool (Russel et al., 2008) was used for the task. Human annotators were
asked to delineate (as polygons) subfigures and their associated panel labels.
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their labels) were compared to the reference set. Second, one
or two of the intermediate results (e.g., text label extraction)
were replaced with the reference annotations. The results of
these evaluations are summarized in Table 4. Precision and
recall were computed for every test run.

The realistic test run based on the actual output of each
intermediate module (the Default column in Table 4)
achieved about 80.9% and 73.4% precision and recall,
respectively. We identified three main causes of errors in the
panel splitting algorithm: (1) image label extraction failed to
detect panel labels in their true location (OCR error), (2)
lower case labels were extracted from text, but the image
labels were upper cases (case mismatch), and (3) image
panel segmentation algorithm failed. Figure 12(a) shows an
example of case (1). The image labels are too small to be
successfully recognized and a wrong label B (in black circle)
was detected in the panel A. As a result, panel A was named
B, and then panel B was named C, which is the next label to
B in alphabetic order. Label C was assigned by default
because the panel B had no associated label detected within

or outside of it. Figure 12(b) shows an example of case (2).
The actual image labels are upper case, but the lower case
labels were extracted from the caption, and this led to selec-
tion of a wrong candidate set (incorrect lower case labels in
panels C and D shown in black background boxes).
Figure 12(c) shows an example in which the image panel
segmentation algorithm failed to detect an entire region of
panel b and e (case 3), and hence they were not counted as
successful or successes because the extracted region is
smaller than 75.0% of the reference set panel.

Figures 12(d) and (e) show additional failure examples.
Figure 12(d) shows an image in which no text labels were
detected and the split panels were labeled using the default
naming convention. The label order meets the rule; however,
the labels are all lower case, not upper case. Keeping upper
case as default label characters, however, achieves higher
performance than a lower case default. Another test run (not
shown in Table 4) with lower case as default achieved 70.2%
and 63.7% precision and recall, respectively. These results
are approximately 10.0% worse than the results for the

TABLE 1. Caption segmentation results—panel label and panel description extraction. Panel description extraction metrics were computed using the
reference set panel labels.

Inexact boundary match Exact boundary match

Precision
(%)

Recall
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

Text panel label 79.03 70.75 74.66 76.92 68.84 72.65
Text panel description 81.06 86.29 83.59 63.35 67.47 65.35

TABLE 2. Results of the image panel segmentation.

Annotated Extracted Correctly extracted
Precision

(%)
Recall

(%)
F1-score

(%)

Number of panels 1764 1482 1276 86.10 72.34 78.62

TABLE 3. Results of the image label extraction.

Total reference
set labels

Total
detected labels

Total
matched labels

Precision
(%)

Recall
(%)

1877 1363 1326 97.29 70.64

TABLE 4. Evaluation results of the combined panel splitting algorithm. The Default column reports the actual results, The RS_ prefixes in the column
headers denote tests with corresponding actual result(s) replaced with reference set annotations. OCR, Text, and Image after the RS_ prefixes denote replaced
results of the image label extraction, text label extraction, and image panel segmentation, respectively. Up to two actual results are replaced.

Default RS_OCR RS_Text RS_Image RS_OCR_Text RS_OCR_Image RS_Text_Image

Precision (%) 80.92 84.97 87.07 83.30 91.34 88.28 89.48
Recall (%) 73.39 78.65 82.34 83.98 91.29 89.88 90.00
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FIG. 12. Examples of failure cases.
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upper case default (compare with Default in Table 4). If no
labels or panels were detected, an image could not be split at
all, as shown in Figure 12(e).

Test runs replacing one or two actual extraction results
with reference annotations achieved better performance as
shown in Table 4. Replacing image panel segmentation
results increased recall by approximately 10.0%. The
failure cases shown in Figure 12(c) and (e) were success-
fully split and named with correct panel borders. Such
cases mainly contributed to the increase in recall. Using
both the reference set text and image labels achieved the
highest performance. Images similar to Figure 12(e) that
was classified as a single-panel in the actual evaluation
were successfully split based on the location of panel
labels. Other failure cases except (c) shown in Figure 12
were corrected as well. Our oracle test results indicate that
improving each individual module is important to achieve
better performance. It is also noticeable that improvement
of the text and image panel label detection algorithms will
provide for a better overall system. Accurate panel label
detection could give the extracted panels (regardless of the
panel segmentation errors) a better chance to be correctly
split and named.

Conclusion

The scientific literature presents a vast and mostly
untapped source of image data. On the one hand, images
found in publications are abundant, and on the other, they
are typically accompanied by meaningful textual descrip-
tions that lend themselves to accurate automatic semantic
indexing. A significant obstacle in the image indexing
process is the predominant presence of multipanel figures.
Multiple figures are often collated into a single figure
described by a single figure caption. Segmenting multipanel
figures into individual subfigures is a necessary preprocess-
ing task for systems targeting scientific image data.

We have developed a system capable of automatically
segmenting multipanel figures and captions into individual
subfigures and their associated textual descriptions. We have
combined text extraction modules with image content-based
processing modules. Two text-based processing modules
first extract the panel labels and panel descriptions from
figure captions. Subsequently, an image panel segmentation
module detects individual panels and another image-content
processing module extracts panel labels. Although each
individual text and image processing module performs sat-
isfactorily, the cumulative errors might result in an unsatis-
factory overall system performance. To avoid aggregating
individual processing errors, we combined the results of
individual modules in a way that improves the overall
system performance, rendering results superior to each of
the individually evaluated system modules. Although the
algorithm for combining the results is developed specifically
for images in the biomedical literature, it should be gener-
alizable to any multipanel figures accompanied by captions
and containing identical labels in both the images and the

captions. The panel splitting module that combines the
labels extracted in the text and image processing steps
achieves precision of 80.9% and recall of 73.4% on the
overall task. These results indicate that the automatic seg-
mentation of multipanel figures is a feasible task that could
considerably improve image retrieval and indexing systems
targeting the scientific literature.
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