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Support Vector Machine and
ML on Documents

« SVM
 Extentions
e Issues in the classification of text documents

« ML methods in ad hoc information retrieval



Support Vector Machine



Support Vector Machine

Maximum Support vectors
margin
decision

hyperplane .

» Figure 15.1 The support vectors are the 5 points right up against the margin of
the classifier.
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» Figure 15.1 The support vectors are the 5 points right up against the margin of
the classifier.
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» Figure 15.3 The geometric margin of a point (r) and a decision boundary (p).
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» Figure 15.3 The geometric margin of a point (r) and a decision boundary (p).
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Soft Margin Classifications (SVM)
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Soft Margin Classifications (SVM)
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MultiClass SVM

1 vs all



Non Linear SVM

One dimensional space, not linearly separable
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Non Linear SVM

One dimensional space, not linearly separable

OO0 o000 00—
3 -2 012 35

Lift to two dimensional space with ¢(x)=(x,x?)




Non Linear SVM

g(x) = wt p(x) +w,,

=|n 2D, discriminant function is linear

o[ 1)) =lwe w5 |+ w

=In 1D, discriminant function is not linear  g(x)=w,x+w,x? +w,



Non Linear SVM

Polynomial kernel K(x,,x,)= (x,‘x,- +1)"

Gaussian radial Basis kernel (data is lifted in infinite
dimension)

Kl x,)- oxp{- s 1 xf



Experimental results

Roc- Dec. linear SVM rbf-SVM

NB chio Trees kNN | C=05 C=1.0 oc~7

earn 96.0 96.1 96.1 97.8 98.0 98.2 98.1
acq 90.7 921 853 91.8 95.5 95.6 94.7
money-fx | 59.6 676 694 754 78.8 78.5 74.3
grain 9.8 795 89.1 826 91.9 93.1 93.4
crude 81.2 815 755 858 89.4 89.4 88.7
trade 522 774 592 779 79.2 79.2 76.6
interest 576 725 491 76.7 75.6 74.8 69.1
ship 809 831 809 79.8 87.4 86.5 85.8
wheat 634 794 855 729 86.6 86.8 82.4
corn 452 622 877 714 87.5 87.8 84.6
microavg. | 723 799 794 826 86.7 87.5 86.4

» Table 15.2 SVM classifier break-even F; from (Joachims 2002a, p. 114). Results

are shown for the 10 largest categories and for microaveraged performance over all
90 categories on the Reuters-21578 data set.



Bias-Variance tradeoff

High order like KNN:

-nigh variance= different training set give rise to different
classifiers.
due to high variance they tend to overfit
-low bias

the classes might be represented

more accurately than just a linear separation
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Soft Margin Classifications (SVM)
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Large C: hard margin=>high bias low variance
small C: soft margin=>low bias high variance



Issues in the classification of text
documents

TIP:
ittle data”
prefer supervised?
go for low bias no to overfit
and general as much as possible
Ike what”?
NB




Issues in the classification of text
documents

TIP:
Not all data labeled?

Use Semi supervised
or in SVM, transductive SVM

TIP:
Active Learning
DCT eases
hand-writing rules




Issues in the classification of text
documents

IP to improve Classitication:

try hierarchical classification

assuming independence in mistakes
might increase accuracy

y voting, boost(adaboost), bagging




Issues in the classification of text
documents

TIP In Features:
think when choosing a feature,
similar behavior of features
might suggest correlation
and redundancy
catching all under same feature

ex; stemming: good? b
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ML methods in ad hoc information retrieval

Example | DocID | Query Cosine score | w || Judgment
Pq 37 | linux operating system 0.032 3 || relevant
O 37 | penguin logo 0.02 4 || nonrelevant
(O 238 | operating system 0.043 2 || relevant
Py 238 | runtime environment 0.004 2 || nonrelevant
P 1741 | kernel layer 0.022 3 || relevant
D¢ 2094 | device driver 0.03 2 || relevant
O 3191 | device driver 0.027 5 || nonrelevant

Score(d,q) = Score(a, w) = an + bw + ¢
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» Figure 15.7 A collection of training examples. Each R denotes a training example
labeled relevant, while each N is a training example labeled nonrelevant.
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ML methods in ad hoc information retrieval

D7 3191

0.027

Example | DocID | Query Cosine score | w || Judgment

Py 37 | linux operating system 0.032 3 || relevant

P, 37 | penguin logo 0.02 4 || nonrelevant

D3 238 | operating system 0.043 2 || relevant

Py 238 | runtime environment 0.004 2 || nonrelevant

D5 1741 | kernel layer 0.022 3 || relevant

D¢ 2094 | device driver 0.03 2 || relevant
device driver 5 || nonrelevant

Score(d,q) = Score(a, w) = an + bw + ¢

ranking?

®(d;,dj,q) = ¢¥(di,q) —¢(d;, q)

ZBT(I)(d,', d]', q) >0 iff d; < d]'

find w that obey this inequation




Learning to Rank for
Information Retrieval

Liu et al.

Chapter 1-5



introduction
Pointwise Approach
Pairwise Approach
Listwise Approach

Analysis



Intro

Problems to rank:
document retrieval
collaborative filtering
key-term extraction
important email routing

sentiment analysis



Intro

Query Dependent Models:

IDF(t) = n(t)
i IDF(¢;) - TF(t:,d) - (ky + 1)

= TF( tz,d) +hi- (1-b+b. D)

BM25(d,q)

where TF(t,d) is the term frequency of t in document d;
IDF(t) is the IDF weight of term t
LEN(d) is the length (number of words) of document d;

avdl is the average document length in the text collection from which documents are drawn;

k1 and b are free parameters;



Intro

Query Dependent Models:

IDF (¢ S
Y IDF() - TF(t,d) - (k1 + 1)
BM25(d,q) = ) | d !

= TF( tz,d) +hi- (1-b+b. D)

where TF(t,d) is the term frequency of t in document d;

IDF(t) is the IDF weight of term t

LEN(d) is the length (number of words) of document d;

avdl is the average document length in the text collection from which documents are drawn;
k1 and b are free parameters;

_ smoothing factor to
(t:1C) background model




Intro

Query InDependent Models:

PR(dv)/value of doc
U(dy) - num of pointers in doc
(%

PR(dy) = >

dy € By,

/

docs pointing to d_u

(1-0a)
N

PR(dy)
PR(d,) = « +
dvze;eu U(dy)

smoothing



Intro

Relevance Judgment:
 relevant or not
* d_iis relevant more d_]j

e order docs



Intro

evaluation:

 all on query level

 all measures are position based
* methods:

Mean AVG precision

P@k(q) = #{relevant documents in the top k positions}

k

> i1 PQEK(q) - I
#{relevant documents}

AP(q) =

g



Intro

where m—1(r) denotes the document ranked at
position r of the list m, G(*) is the rating of a document (one usually sets
G(m=1(r)) = (2lm=1(r) = 1)), and n(r) is a
evaluation: position discount factor (one usually sets n(r) = 1/log2(r + 1)).

 all on query level
 all measures are position based
* methods:

Discounted Cumulative Gain

DCG@k(qg }:G X

ND -1
CG@k(q = 7 ZG (m))n



:

Intro The correlation between the ranked list given by
the model (denoted as m) and the relevance judgment
(denoted as ml) can be used to define a measure.
i For example, when the weighted Kendall’s T is used,
evaluation: the RC measures the weighted pair- wise inconsistency between two lists

 all on query level
 all measures are position based
* methods:

Rank Correlation

D ucw Wuw(1 +sgn((m(uw) — w(v))(mi(u) — m(v))))
TK(q) = 25wy
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Pointwise Learning
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P

OHSU

P(relevance|d,q)
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Pointwise Learning

i or 11l or relative comparison

doc d1 =y4§
doc d2=y3§

doc d3=y6§

........................................

docs are Iid

Fig. 1.1 Learning-to-rank framework.
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P(relevance|d,q)
a can be sorted



Pointwise Learning

Regression:

-polynomial and subset ranking

T=num of feats in doc

fk(:l:j) = Wk + Wk,1*Tj1+ -+ WeT* T§T . e
binary or topic listiny

+ Wk, T+1 ° 11332',1 + Wk, 42 * Tj1 - T2 + -+,

L(f;25,95) = g5 — f(a)]* problem: cannot constraint to (1,0)
(2,0) doesn’t make sense

if not (1,0), (2,0) not more relevant

L(f;zj,y;) = (y; — f(z4))?



Pointwise Learning
Classification:

-ME and SVM

SVM: good generalization theory based on the VC dimension, and
therefore is theoretically guaranteed to have good performance even if

the number of training samples is small

L(95,95) = Iy;29;)  judge,prediction

K-1
k- P(y multl class

k=0



Pointwise Learning

Ordinal:

Model output

lé/ by
e
' |

Correct category

/

| I’I M—» w
bl 1)2 1)3 ,)l
(a)
w'
W
+ | s\



Pointwise Learning

Ordinal:

ranking with large margin principles



Pointwise Learning

Problems:
We want relative order and not relevance degree!

because will still ignore the document in context of other
documents

if we have |Xi|>>]|Xj| for different g -> loss function will
be dominated by those g with |Xi|

the position of each doc is ignored in the loss function



Pairwise Learning

_ h :
L(h;xuamvayu,v) - |yU,'v 2($u xv)|

h(xuaxv) — ththt(xu,xv)
exp(f(zy) — f(y))

Puo(f) =
RankNet and FRank 1+ exp(f(za) — f(0))

~ , 12 ' ' : doesn’t have always

< 10 a zero minimum
S0 2 8 scaling
=05} Z 6
= [ 2 4 F

0 N N . : N

0 5 | 000 5 0 5 10

| a f(-l'u) - f(’l)
L(f;Zu, Ty Yup) = 1 — \/pu,vpu,v(f) L(f;xuyxvvyu,v) = “‘Pu.v logpu.v(f)

_(l - Pu,v)log(1 - pu,v(f))

there will always be some loss no matter what kind of model is used

_ \/(1 — Puy)(1 = Puo(f))




Pairwise Learning

Algorithm 1 Learning Algorithm for RankBoost

Input: document pairs
Given: initial distribution D; on input document pairs.
Fort=1,...,T
Train weak ranker f; based on distribution Dj.
Choose oy

Update Dt+1($z(j),-’5g) = Z%Dt(l’g),wz(;i))exp(at(ft(xt(f)) - ft(ilit(j))))
where Z, =1, 32, o _ D@, i) explan(fe(@i) — fulai))).

Output: f(z) =), o fi(z).




Pairwise Learning

Algorithm 1 Learning Algorithm for RankBoost

Input: document pairs
Given: initial distribution D; on input document pairs.
Fort=1,...,T

Train weak ranker f; based on distribution D;.

Choose oy

Update Dys1(ay,zy)) = % De (xs),xs‘bexp(at(ft(xﬁ) - fi(@”)))

where Z, = Y1, 5, o Dill,20) exp(an(fi(2) — f(al)).

Output: f(z) =), o fi(z).

L(f§xu,$vayu,v) — eXp(_yu,v(f(xu) — f(mv)))

ranking SVM



Pairwise Learning

Problem: if we have |Xi|>>|Xj| for different q ->
loss function will be dominated by those g with |
Xi| and since these are pairs the problem is bigger.

Solution:



Pairwise Learning

Problem: if we have |Xi|>>|Xj| for different g -> loss function
will be dominated by those g with |Xi| and since these are pairs
the problem is bigger.

Solution:

The pairwise loss for a query will be normalized by the total
number of document pairs associated with that query ->
comparable with each other in their magnitude, no matter how
many document pairs they are originally associated (IR-SVM)



Listwise Learning

Direct Optimization of IR Evaluation
Measures .

learn the ranking model by directly optimizing
what is used to evaluate the ranking performance



Listwise Learning

Direct Optimization of IR Evaluation

Measures

Algorithm 2 Learning Algorithms for AdaRank

Input: document group for each query
Given: initial distribution D; on input queries
Fort=1,...,T

Train weak ranker f;(-) based on distribution D;.

S De(i)(14+M(fe,xD,yH))
m o De(i)(A—M(fie,x() y (1))

— . (1) y(3)
Update Dt+1('i) — exp( M(Eszlans,x y'*))

Z;’l=1 cxp(—M(Z§=l asfs,x(j) ay(j))) ’
Output: >, oy fi(+).

Choose a; = %log




Listwise Learning

Direct Optimization of IR Evaluation
Measures

Genetic Programming based Algorithms

A single population genetic programming is used to perform learning on the tree. Cross-over, mutation,
reproduction, and tournament selection are used as evolution mechanisms, and the IR evaluation measure
is used as the fitness function



Listwise Learning

Minimization of Listwise Ranking Losses

GOAL:
measures the inconsistency between the output of the ranking
model and the ground truth permutation my



Listwise Learning

Minimization of Listwise Ranking Losses

ListNet:

is all about permutation probability distribution based on the
scores given by scoring function f:




Listwise Learning

Minimization of Listwise Ranking Losses

ListNet:

is all about permutation probability distribution based on the
scores given by scoring function f:

= (A,B,C)
Pr =P PP;

p(sA)

P1= 06 + o(s5) + v(s0)

w(sB)

2= p(sB) + v(sc)




Listwise Learning

Minimization of Listwise Ranking Losses

ListNet:

is all about permutation probability distribution based on the
scores given by scoring function f:

= (A,B,C)
Pr = PPy P;
P, — p(s4)
p(s4) + ¢(sB) + ¢(sc)
Py = p(sB)

p(sB) + v(sc)

Then it defines another permutation probability distribution Py(mm) based on the ground truth label.3 For the next
step, ListNet uses the K-L divergence between these two distributions to define its listwise ranking loss (which
we call the K-L divergence loss for short).



Listwise Learning

Minimization of Listwise Ranking Losses

ListNet:

is all about permutation probability distribution based on the
scores given by scoring function f:

T = (A,B,C)
P. = PP, Ps high computation load but
can be reduced to polynomial
P = ‘P(SA)
p(sa) + o(sB) + ¢(sc)
Py = (P(SB)

p(sB) + v(sc)

Then it defines another permutation probability distribution Py(mm) based on the ground truth label.3 For the next
step, ListNet uses the K-L divergence between these two distributions to define its listwise ranking loss (which
we call the K-L divergence loss for short).



Listwise Learning

Minimization of Listwise Ranking Losses
ListMLE:

listNet too big - complexity

listNet too small - permutation info will be lost

L(f;x,my) = —log P(my | o(f(w,x)))

For each query g, with the permutation probability distribution defined with the output of the scoring
function, it uses the negative log likelihood of the ground truth permutation as the listwise ranking loss

*permutations satisfying these constraints might not always be the ground truth permutations



Analysis

Pointwise

If one can really minimize the regression loss to zero, one can also minimize (1 —
NDCG) to zero

If one can really minimize the classification loss to zero, one can also minimize (1
— NDCG) to zero at the same time

However, The minimization of the regression loss and the classification loss is only a
sufficient condition but not a necessary condition for optimal ranking in terms of
NDCG



Analysis

Pairwise

As compared to the bounds given in the previous subsection, one can see
that the essential loss has a nicer property. When (1 — NDCQG) is zero, the
essential loss is also zero. In other words, the zero value of the essential
loss is not only a sufficient condition but also a necessary condition of the
zero value of (1 — NDCQG)



Analysis

Listwise - Listwise Ranking Loss

The minimization of the likelihood loss in the training process will lead to the
minimization of (1-NDCG)

Listwise - Loss Functions in Direct Optimization Methods

1) There always exists such inputs and outputs that will result in the large
difference between its surrogate measure and the corresponding IR
evaluation measure

2) Consequently, it is not guaranteed that these algorithms can lead to
the effective optimization of the IR evaluation measures



Learning for
Search result Diversification
Zhu et al.

2014



Intro

Goal: search result diversification

Diverse ranking typically considers the relevance of a document in light of the other
retrieved documents

(1) The ranking function is defined as the combination of relevance score and diversity
score, where the relevance score only depends on the content of the document, and the
diversity score depends on the relationship between the current document and those
previously selected

(2) The loss function is defined as the likelihood loss of ground truth based on Plackett-
Luce model
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Intro

(XD, RM yM) (x@ R® @) ... (xN) ROV (W)

N

. - (@) p@)y <)
f—argrfréljrCI;L(f(X , B*),y*")

It is better to view diverse ranking as a sequential selection process, in the sense that the ranking list is
generated in a sequential order, with each individual document ranked according to its relevance to the
query and the relation between all the documents ranked before it



Intro

Diversity Diversity

A

d8 D evance Relevan

d7

An illustration of the sequential way to define ranking function. All the rectangles represent candidate documents of a user query, and different colors represent different subtopics. The solid rectangle is
relevant to the query, and the hollow rectangle is irrelevant to the query, and larger size means more relevance. X denotes all the candidate document collection. S denotes previously selected documents,
and X\S denotes the remanent documents



Intro




Intro

Diversity Diversity

o @B xs

relevance feature vector

\

fs(xi, Ri) = wlx; + wlhs(R;),Vz; € X\S

b



Intro

Diversity Diversity

R B xs
Rele
relevance feature vector

\ relationshi?s with selected docs

fs(xi, Ri) = wlx; + wlhs(R;),Vz; € X\S

b



Intro

Diversity Diversity

R B xs
Rele
relevance feature vector

\ relational function 4}k&tionships with selected docs
T T \'
fs(zi, Ri) = wy Xi +wg hs(Ri),Vz; € X\S



Intro

Diversity Diversity

7| @A xs
Rele
relevance feature vector

\ relational function relationships with selected docs

/
fs(zi, Ri) = wixi +wlhs(R:),Vz; € X\S

f(X, R) — (f30 ’ fSl, Tty fSn—l) ranking function

2



Relational Function #(s)
/

purpose: diversity relationship



Relational Function #(s)
/

purpose: diversity relationship

minimal distance
averaged distance

maximal distance



Diversity Feature Vector ®;

subtopic diversity



Diversity Feature Vector ®;

subtopic diversity

Rij1 = \Z p(zk|Ti) — p(2k|T5))?
k=1

Probabilistic LSA



Diversity Feature Vector ®;

subtopic diversity



Diversity Feature Vector ®;

subtopic diversity

text diversity

d; - d;
sl ]

Rijo=1—



Diversity Feature Vector ®;

subtopic diversity

text diversity



Diversity Feature Vector ®;

subtopic diversity
text diversity

title diversity



Diversity Feature Vector ®;

subtopic diversity
text diversity
title diversity

anchor text diversity

content and importance



Diversity Feature Vector ®;

subtopic diversity
text diversity
title diversity

anchor text diversity



Diversity Feature Vector ®;

subtopic diversity
text diversity

title diversity

anchor text diversity

ODP-based diversity

c-dis(u,v) =1 — (u, v) R — 2 uec; 2vec; C-dis(u,v)
max{ |u|, |v|} ij5 = AN




Diversity Feature Vector ®;

subtopic diversity
text diversity

title diversity

anchor text diversity

ODP-based diversity



Diversity Feature Vector ®;

subtopic diversity
text diversity

title diversity

anchor text diversity
ODP-based diversity
linked-based diversity

0 if z; € inlink(z;) U outlink(x;)
Rije = :
1 otherwise



Diversity Feature Vector ®;

subtopic diversity
text diversity

title diversity

anchor text diversity
ODP-based diversity
linked-based diversity



Diversity Feature Vector ®;

subtopic diversity
text diversity
title diversity
anchor text diversity
ODP-based diversity
linked-based diversity
0 if one url is another’s prefiz

Url'based dIVGFSIty Rij7 = {0.5 if they belong to the same site or domain

1 otherwise



Loss Function £

L(f(X,R),y) = —log P(y|X)

model the generation of a diverse ranking list in a sequential way



Loss Function £

L(f(X,R),y) = —log P(y|X)

model the generation of a diverse ranking list in a sequential way

P(y|X)=P(zy(1), Ty(2),*** s Ty(n)| X) (4,
= P(zy(1)| X)P(2y(2)| X \S1) - + - P(@y(n—1)| X \Sn—2)

OHSU
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Loss Function £

L(f(X,R),y) = —log P(y|X)

model the generation of a diverse ranking list in a sequential way

P(le):P(my(l),nym),“‘ ,:By(n)'X) (4:
= P(2y1)| X)P(Ty2)| X \51) - - - P(Ty(n—1)| X \Sn—-2)

exp{ fo(zy1))}

P(zy1)|X) = St exp{fo(zymx)}’

(5)

exp{ fs;_, (Zy(), Ry))}
> k=j exXp{fsi_, (Ty(k), Ryr)) }

Incorporating Eq.(5) and Eq.(6) into Eq.(4), the generation
probability of a diverse ranking list is formulated as follows.

1 exp{fs; i (@y6), Ry))}
i 31:[1 > k=j XP{fs,_; (Ty(x), Ry())}

where Sy = 0, fo(z, R) = w; x.

P(zy(;)|X\Sj-1) =

(6)

(7)



Training

Algorithm 1 Construction of Approximate Ideal
Ranking List
Input:
(qi, XD, T3, P(2V)t)),t € Ti,zl? € XD
Output: y®
. Initialize Sp + 0,y = (1,--- ,n;)
: fork=1,...,n; do
bestDoc « argmax,c xi)\s, , ODM(Sk—1 Uz)
Sk < Sk_1 UbestDoc

y (k) = the indez of bestDoc
- end for

return y(’:) — (y(i)(l), e ,y(i) (n4)).

AN S T




Learning

Algorithm 2 Optimization Algorithm

Input: training data {(X®, R® y)}N |
parameter: learning rate 7, tolerance rate ¢

Output: model vector: w,, wg

1: Initialize parameter value w,, wy

2: repeat

Shuffle the training data

fori=1,...,N do
Compute gradient Aw,®) and Awy®
Update model: w, = wr — 1 X Awr P,

Wa = wg — N X Awg®

7: end for
8:  Calculate likelihood loss on the training set
9: until the change of likelihood loss is below e




Prediction

Algorithm 3 Ranking Prediction via Sequential Se-
lection

Input: X R® w,. wg

Output: y*

1: Initialize So + 0,y = (1,--- ,n4)

2: fork=1,...,n: do

3:  bestDoc < argmax, x, fs,_,(z, R)
4: Sk < Sk—1 UbestDoc

5: 3y (k) < the index of bestDoc

6: end for

7: return y* = (y(1),- -,y (ne))




features

Table 1: Relevance Features for learning on
ClueWeb09-B collection [21, 19].
Category | Feature Description | Total
Q-D TF-IDF 5
Q-D BM25 5
Q-D QL.DIR 5
Q-D MRF 10
D PageRank 1
D #Inlinks 1
D #Outlinks 1

&
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Table 2: Performance comparison of all methods in official TREC diversity measures for WT2009

Method ERR-TA a-NDCG NRBP

QL 0.1637 0.2691 0.1382
ListMLE 0.1913 (+16.86%) 0.3074 (+14.23%) 0.1681 (+21.64%)
MMRy;s¢ 0.2022 (+23.52%) 0.3083 (+14.57%) 0.1715 (+24.09%)
xQUADy;s 0.2316 (+41.48%) 0.3437 (+27.72%) 0.1956 (+41.53%)
PM-2; 4t 0.2294 (+40.13%) 0.3369 (+25.20%) 0.1788 (+29.38%)
SVMDIV 0.2408 (+47.10%) 0.3526 (+31.03%) 0.2073 (+50.00%)
R-LTRymin 0.2714 (+65.79%) 0.3915 (+45.48%) 0.2339 (+69.25%)
R-LTRauvg 0.2671 (+63.16%) 0.3964 (+47.31%) 0.2268 (+64.11%)
R-LTRmaz 0.2683 (+63.90%) 0.3933 (+46.15%) 0.2281 (+65.05%)
TREC-Best 0.1922 0.3081 0.1617
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Table 3: Performance comparison of all methods in official TREC diversity measures for WT2010.

Method ERR-IA a-NDCG NRBP

QL 0.1980 0.3024 0.1549
ListMLE 0.2436 (+23.03%) 0.3755 (+24.17%) 0.1949 (+25.82%)
MMRy; st 0.2735 (+38.13%) 0.4036 (+33.47%) 0.2252 (+45.38%)
xQuADy;s¢ 0.3278 (+65.56%) 0.4445 (+46.99%) 0.2872 (+85.41%)
PM-2;; ¢ 0.3296 (+66.46%) 0.4478 (+48.08%) 0.2901 (+87.28%)
SVMDIV 0.3331 (+68.23%) 0.4593 (+51.88%) 0.2934 (+89.41%)
R-LTR nin 0.3647 (+84.19%) 0.4924 (+462.83%) 0.3293 (4112.59%)
R-LTRaug 0.3587 (+81.16%) 0.4781 (+58.10%) 0.3125 (+101.74%)
R-LTR 0z 0.3639 (+83.79%) 0.4836 (+59.92%) 0.3218 (+107.74%)
TREC-Best 0.2981 0.4178 0.2616
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Table 4: Performance comparison of all methods in official TREC diversity measures for WT2011

Method ERR-IA a-NDCG NRBP

QL 0.3520 0.4531 0.3123
List MLE 0.4172 (+18.52%) 0.5169 (+14.08%) 0.3887 (+24.46%)
MMRy;st 0.4284 (+21.70%) 0.5302 (+17.02%) 0.3913 (+25.30%)
xQuADy; st 0.4753 (+35.03%) 0.5645 (+424.59%) 0.4274 (+36.86%)
PM-2;; ¢ 0.4873 (+38.44%) 0.5786 (+27.70%) 0.4318 (+38.26%)
SVMDIV 0.4898 (+39.15%) 0.5910 (+30.43%) 0.4475 (+43.29%)
R-LTRin 0.5389 (+53.10%) 0.6297 (+38.98%) 0.4982 (+59.53%)
R-LTRavg 0.5276 (+49.89%) 0.6219 (+37.25%) 0.4724 (+51.26%)
R-LTRmaz 0.5285 (+50.14%) 0.6223 (+37.34%) 0.4741 (+51.81%)
TREC-Best 0.4380 0.5220 0.4070
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WT2009 WT2010 WT2011

R-LTR_max e ReLTR_max P RATR_maax

R-LTR_avg N RALTR_avg N R-LTR_avg
I, R-LTR_min I R-LTR_min I R-LTR_min
P svmoiv e symoiv e svmonv
I P0-2_list I prv-2_list I PM-2_list
I xQuAD_list I xQuAD_list I xQuAD_list
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I ListMLE I ListMLE I ListMLE
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Figure 2: Performance comparison of all methods in Precision-IA for WT2009, WT2010, WT2011.

WT2009 WT2010 WT2011
P R-LTR_max D R-LTR_max IR BeATR_max
I R-LTR_avg I R-LTR_avg I R-LTR _avg
P R-LTR_min I R-LTR_min N R-LTR_min
- svmorv . sVMDIV P svmoiv
I P-2_list I P)-2_list e ——————— AL

I X QUAD_fist I XQUAD _ist
I VMR st I MMR_ist
I ListMLE I ListMLE I ListMLE

B au au N au
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Figure 3: Performance comparison of all methods in Subtopic Recall for WT2009, WT2010, WT2011.



Robustness Analysis

Table 5: The robustness of the performance of all

diversity methods in Win/Loss ratio

WT2009 WT2010 WT2011  Total
ListMLE | 20/18  27/16  26/11  73/45
MMRys | 22/15  29/13  29/10  80/38

xQuAD,,. | 28/11  31/12  31/12  90/35
PM-2,,; | 26/15  32/12  32/11  90/38
SVMDIV | 30/12  32/11  32/11  94/34

R-LTR,..n | 34/9  35/10  35/9  104/28

R-LTRav, | 33/9 34/11 34/10  101/30

R-LTRmae | 33/10  35/10  34/10  102/30

consistent win/loss ratio
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Feature Importance Analysis

Table 6: Order list of diversity features with corre-
sponding weight value.
feature weight
Rij1(topic) 3.71635
Rijs(title) 1.53026
Rija(anchor) | 1.34293
Rijg(text) 0.98912
Rijs(ODP) | 0.52627
Rije(Link) 0.04683
Rijz(URL) | 0.01514




Feature Importance Analysis

Table 6: Order list of diversity features with corre-

sponding weight value.

feature weight
Rij1(topic) 3.71635
Rijs(title) 1.53026
Rija(anchor) | 1.34293
Rijg(text) 0.98912
Rijs(ODP) | 0.52627
Rije(Link) 0.04683
Rijz(URL) | 0.01514

subtopic diversity

ListMLE (~ 1.5h) < SVMDIV (~ 2h) < R-LTR (~ 3h)

complexity: future optimization




End

Should I implement it ?



