
Relevance Feedback
• Concepts

• Global methods

• Query expansion

• Thesauri

• Local methods

• Rocchio’s algorithm

• Probabilistic formulations

• Implicit/Blind Relevance Feedback

• Papers



Relevance Feedback
Standard model of information seeking

Recall that the information-seeking process is iterative...



Recall that the information-seeking process is iterative...

Why?

Users might:

Not know how to optimally word a query...

Not be sure what they’re looking for, but will 
“know it when I see it”...

Not be sure what the collection contains...

All of these forces drive the need to iterate!

Remember: “recognition over recall”!



Classical relevance feedback flow:

1. User issues query;

2. System returns initial set of results;

3. User marks some number of documents as +/- relevant

4. System uses this data to compute a better 
representation of the user’s information need

5. Repeat from step 2.



There are three major ways of doing relevance feedback:

1. Explicit Feedback

2. Implicit Feedback

3. Blind Feedback

Users explicitly mark results as +/- relevant.

The system attempts to infer +/- relevance from observable user behavior

The system attempts to infer +/- relevance blindly (no evidence)



Another way to conceptualize relevance feedback:

“Global” methods adjust a query independent of its results;

“Local” methods adjust a query relative to its results.

Thesaurus-based query expansion, etc.

Explicit/pseudo relevance feedback, etc.









Another way to conceptualize relevance feedback:

Let’s hypothesize an optimal query to represent a given 
information need...

... the goal of relevance feedback is to adjust the user’s query 
to more closely match the optimal query.

We can do this by adding terms or otherwise altering the 
user’s query based on +/- relevant documents.



“Global” methods adjust a query independent of its results.

Query expansion: increase query effectiveness by adding 
new, hopefully relevant search terms

Online edition (c)�2009 Cambridge UP

190 9 Relevance feedback and query expansion

! Figure 9.6 An example of query expansion in the interface of the Yahoo! web
search engine in 2006. The expanded query suggestions appear just below the “Search
Results” bar.

web) suggest related queries in response to a query; the users then opt to use
one of these alternative query suggestions. Figure 9.6 shows an example of
query suggestion options being presented in the Yahoo! web search engine.
The central question in this form of query expansion is how to generate al-
ternative or expanded queries for the user. The most common form of query
expansion is global analysis, using some form of thesaurus. For each term
t in a query, the query can be automatically expanded with synonyms and
related words of t from the thesaurus. Use of a thesaurus can be combined
with ideas of term weighting: for instance, one might weight added terms
less than original query terms.

Methods for building a thesaurus for query expansion include:

• Use of a controlled vocabulary that is maintained by human editors. Here,
there is a canonical term for each concept. The subject headings of tra-
ditional library subject indexes, such as the Library of Congress Subject
Headings, or the Dewey Decimal system are examples of a controlled
vocabulary. Use of a controlled vocabulary is quite common for well-
resourced domains. A well-known example is the Unified Medical Lan-
guage System (UMLS) used with MedLine for querying the biomedical
research literature. For example, in Figure 9.7, neoplasms was added to a



“Global” methods adjust a query independent of its results.

Query expansion: increase query effectiveness by adding 
new, hopefully relevant search terms

Supervised approaches: 
Thesauri, controlled vocabularies, etc.

Unsupervised approaches: 
Corpus-based association mining, vector embeddings, etc.



“Local” methods adjust a query relative to its results.



The classical approach: Rocchio’s algorithm

Rocchio’s algorithm operates on a vector space model.

The theory: the optimal query vector maximizes similarity with the relevant 
documents while minimizing similarity with non-relevant documents.

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Of course, we don’t know the full set of relevant and non-relevant documents!

relevant document vectors non-relevant document vectors



The classical approach: Rocchio’s algorithm
The theory: the optimal query vector maximizes similarity with the relevant 
documents while minimizing similarity with non-relevant documents.

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

182 9 Relevance feedback and query expansion

! Figure 9.4 An application of Rocchio’s algorithm. Some documents have been
labeled as relevant and nonrelevant and the initial query vector is moved in response
to this feedback.

nism introduced in and popularized by Salton’s SMART system around 1970.
In a real IR query context, we have a user query and partial knowledge of
known relevant and nonrelevant documents. The algorithm proposes using
the modified query q⃗m:

q⃗m = α⃗q0 + β
1

|Dr|
∑

d⃗ j∈Dr

d⃗j − γ
1

|Dnr|
∑

d⃗ j∈Dnr

d⃗j(9.3)

where q0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and α, β, and γ are weights
attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher β and γ. Starting from q0, the new query moves you
some distance toward the centroid of the relevant documents and some dis-
tance away from the centroid of the nonrelevant documents. This new query
can be used for retrieval in the standard vector space model (see Section 6.3).
We can easily leave the positive quadrant of the vector space by subtracting
off a nonrelevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0. Figure 9.4 shows the
effect of applying relevance feedback.

Relevance feedback can improve both recall and precision. But, in prac-
tice, it has been shown to be most useful for increasing recall in situations

small set of known-relevant docs small set of known-non-relevant docs

α, β, γ are weights for how much to rely on the various components.

How should they be set?

Original query vector



The classical approach: Rocchio’s algorithm
The theory: the optimal query vector maximizes similarity with the relevant 
documents while minimizing similarity with non-relevant documents.

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

182 9 Relevance feedback and query expansion

! Figure 9.4 An application of Rocchio’s algorithm. Some documents have been
labeled as relevant and nonrelevant and the initial query vector is moved in response
to this feedback.

nism introduced in and popularized by Salton’s SMART system around 1970.
In a real IR query context, we have a user query and partial knowledge of
known relevant and nonrelevant documents. The algorithm proposes using
the modified query q⃗m:

q⃗m = α⃗q0 + β
1

|Dr|
∑

d⃗ j∈Dr

d⃗j − γ
1

|Dnr|
∑

d⃗ j∈Dnr

d⃗j(9.3)

where q0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and α, β, and γ are weights
attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher β and γ. Starting from q0, the new query moves you
some distance toward the centroid of the relevant documents and some dis-
tance away from the centroid of the nonrelevant documents. This new query
can be used for retrieval in the standard vector space model (see Section 6.3).
We can easily leave the positive quadrant of the vector space by subtracting
off a nonrelevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0. Figure 9.4 shows the
effect of applying relevance feedback.

Relevance feedback can improve both recall and precision. But, in prac-
tice, it has been shown to be most useful for increasing recall in situations

small set of known-relevant docs small set of known-non-relevant docs

α, β, γ are weights for how much to rely on the various components.

When we have a lot of judged documents, β and γ should be large...



The classical approach: Rocchio’s algorithm
The theory: the optimal query vector maximizes similarity with the relevant 
documents while minimizing similarity with non-relevant documents.

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

182 9 Relevance feedback and query expansion

! Figure 9.4 An application of Rocchio’s algorithm. Some documents have been
labeled as relevant and nonrelevant and the initial query vector is moved in response
to this feedback.

nism introduced in and popularized by Salton’s SMART system around 1970.
In a real IR query context, we have a user query and partial knowledge of
known relevant and nonrelevant documents. The algorithm proposes using
the modified query q⃗m:

q⃗m = α⃗q0 + β
1

|Dr|
∑

d⃗ j∈Dr

d⃗j − γ
1

|Dnr|
∑

d⃗ j∈Dnr

d⃗j(9.3)

where q0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and α, β, and γ are weights
attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher β and γ. Starting from q0, the new query moves you
some distance toward the centroid of the relevant documents and some dis-
tance away from the centroid of the nonrelevant documents. This new query
can be used for retrieval in the standard vector space model (see Section 6.3).
We can easily leave the positive quadrant of the vector space by subtracting
off a nonrelevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0. Figure 9.4 shows the
effect of applying relevance feedback.

Relevance feedback can improve both recall and precision. But, in prac-
tice, it has been shown to be most useful for increasing recall in situations

small set of known-relevant docs small set of known-non-relevant docs

α, β, γ are weights for how much to rely on the various components.

When we have fewer judged documents, α should dominate...



The classical approach: Rocchio’s algorithm
The theory: the optimal query vector maximizes similarity with the relevant 
documents while minimizing similarity with non-relevant documents.

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 181

! Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as q⃗, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

q⃗opt = arg max
q⃗

[sim(⃗q, Cr) − sim(⃗q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector q⃗opt for separating the relevant and nonrelevant documents is:

q⃗opt =
1

|Cr |
∑

d⃗ j∈Cr

d⃗j −
1

|Cnr|
∑

d⃗ j∈Cnr

d⃗j(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).

Online edition (c)�2009 Cambridge UP

182 9 Relevance feedback and query expansion

! Figure 9.4 An application of Rocchio’s algorithm. Some documents have been
labeled as relevant and nonrelevant and the initial query vector is moved in response
to this feedback.

nism introduced in and popularized by Salton’s SMART system around 1970.
In a real IR query context, we have a user query and partial knowledge of
known relevant and nonrelevant documents. The algorithm proposes using
the modified query q⃗m:

q⃗m = α⃗q0 + β
1

|Dr|
∑

d⃗ j∈Dr

d⃗j − γ
1

|Dnr|
∑

d⃗ j∈Dnr

d⃗j(9.3)

where q0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and α, β, and γ are weights
attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher β and γ. Starting from q0, the new query moves you
some distance toward the centroid of the relevant documents and some dis-
tance away from the centroid of the nonrelevant documents. This new query
can be used for retrieval in the standard vector space model (see Section 6.3).
We can easily leave the positive quadrant of the vector space by subtracting
off a nonrelevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0. Figure 9.4 shows the
effect of applying relevance feedback.

Relevance feedback can improve both recall and precision. But, in prac-
tice, it has been shown to be most useful for increasing recall in situations

small set of known-relevant docs small set of known-non-relevant docs

α, β, γ are weights for how much to rely on the various components.

In any event, positive feedback is almost always more useful, so β > γ.



Online edition (c)�2009 Cambridge UP

182 9 Relevance feedback and query expansion

! Figure 9.4 An application of Rocchio’s algorithm. Some documents have been
labeled as relevant and nonrelevant and the initial query vector is moved in response
to this feedback.

nism introduced in and popularized by Salton’s SMART system around 1970.
In a real IR query context, we have a user query and partial knowledge of
known relevant and nonrelevant documents. The algorithm proposes using
the modified query q⃗m:

q⃗m = α⃗q0 + β
1

|Dr|
∑

d⃗ j∈Dr

d⃗j − γ
1

|Dnr|
∑

d⃗ j∈Dnr

d⃗j(9.3)

where q0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and α, β, and γ are weights
attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher β and γ. Starting from q0, the new query moves you
some distance toward the centroid of the relevant documents and some dis-
tance away from the centroid of the nonrelevant documents. This new query
can be used for retrieval in the standard vector space model (see Section 6.3).
We can easily leave the positive quadrant of the vector space by subtracting
off a nonrelevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0. Figure 9.4 shows the
effect of applying relevance feedback.

Relevance feedback can improve both recall and precision. But, in prac-
tice, it has been shown to be most useful for increasing recall in situations

The classical approach: Rocchio’s algorithmRocchio algorithm: Number example

new query vector = α · original query vector +
                    β · relevant document vectors -

           γ · non-relevant document vectors

0 4 0 8 0 0

2 4 8 0 0 2

8 0 4 4 0 16

Borrowed from:  www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R.../lecture7.ppt

Original query vector

Known-relevant centroid

Known-non-relevant centroid

Borrowed from: http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2006-Spring/syllabus.html

http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2006-Spring/syllabus.html
http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2006-Spring/syllabus.html


Online edition (c)�2009 Cambridge UP

182 9 Relevance feedback and query expansion

! Figure 9.4 An application of Rocchio’s algorithm. Some documents have been
labeled as relevant and nonrelevant and the initial query vector is moved in response
to this feedback.

nism introduced in and popularized by Salton’s SMART system around 1970.
In a real IR query context, we have a user query and partial knowledge of
known relevant and nonrelevant documents. The algorithm proposes using
the modified query q⃗m:

q⃗m = α⃗q0 + β
1

|Dr|
∑

d⃗ j∈Dr

d⃗j − γ
1

|Dnr|
∑

d⃗ j∈Dnr

d⃗j(9.3)

where q0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and α, β, and γ are weights
attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher β and γ. Starting from q0, the new query moves you
some distance toward the centroid of the relevant documents and some dis-
tance away from the centroid of the nonrelevant documents. This new query
can be used for retrieval in the standard vector space model (see Section 6.3).
We can easily leave the positive quadrant of the vector space by subtracting
off a nonrelevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0. Figure 9.4 shows the
effect of applying relevance feedback.

Relevance feedback can improve both recall and precision. But, in prac-
tice, it has been shown to be most useful for increasing recall in situations

The classical approach: Rocchio’s algorithmRocchio algorithm: Number example

new query vector = α · original query vector +
                    β · relevant document vectors -

           γ · non-relevant document vectors

0 4 0 8 0 0

2 4 8 0 0 2

8 0 4 4 0 16

Borrowed from:  www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R.../lecture7.ppt

γ = 0.25

α = 1

β = 0.5

Borrowed from: http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2006-Spring/syllabus.html

Rocchio algorithm: Number example

new query vector = α · original query vector +
                    β · relevant document vectors -

           γ · non-relevant document vectors

0 4 0 8 0 0

2 4 8 0 0 2

8 0 4 4 0 16

0 4 0 8 0 0

1 2 4 0 0 1

2 0 1 1 0 4

α = 1

β = 0.5

γ = 0.25

+

-

Borrowed from:  www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R.../lecture7.ppt

Typically β > γ, 
since positive 

feedback is more 
meaningful.

Rocchio algorithm: Number example

new query vector = α · original query vector +
                    β · relevant document vectors -

           γ · non-relevant document vectors

0 4 0 8 0 0

2 4 8 0 0 2

8 0 4 4 0 16

0 4 0 8 0 0

1 2 4 0 0 1

2 0 1 1 0 4

α = 1

β = 0.5

γ = 0.25

+

-

-1 6 3 7 0 -3

0 6 3 7 0 0

Borrowed from:  www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R.../lecture7.ppt

Typically β > γ, 
since positive 

feedback is more 
meaningful.

Negative term 
weights become 0.

Rocchio algorithm: Number example

new query vector = α · original query vector +
                    β · relevant document vectors -

           γ · non-relevant document vectors

0 4 0 8 0 0

2 4 8 0 0 2

8 0 4 4 0 16

0 4 0 8 0 0

1 2 4 0 0 1

2 0 1 1 0 4

α = 1

β = 0.5

γ = 0.25

+

-

-1 6 3 7 0 -3

0 6 3 7 0 0

Borrowed from:  www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R.../lecture7.ppt

Typically β > γ, 
since positive 

feedback is more 
meaningful.

Negative term 
weights become 0.Under Rocchio’s formulation, negative weights get zeroed out.

http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2006-Spring/syllabus.html
http://www.umiacs.umd.edu/~jimmylin/LBSC796-INFM718R-2006-Spring/syllabus.html


Online edition (c)�2009 Cambridge UP

9.1 Relevance feedback and pseudo relevance feedback 183

where recall is important. This is partly because the technique expands the
query, but it is also partly an effect of the use case: when they want high
recall, users can be expected to take time to review results and to iterate on
the search. Positive feedback also turns out to be much more valuable than
negative feedback, and so most IR systems set γ < β. Reasonable values
might be α = 1, β = 0.75, and γ = 0.15. In fact, many systems, such as
the image search system in Figure 9.1, allow only positive feedback, which
is equivalent to setting γ = 0. Another alternative is to use only the marked
nonrelevant document which received the highest ranking from the IR sys-
tem as negative feedback (here, |Dnr| = 1 in Equation (9.3)). While many of
the experimental results comparing various relevance feedback variants are
rather inconclusive, some studies have suggested that this variant, called IdeIDE DEC-HI

dec-hi is the most effective or at least the most consistent performer.

✄ 9.1.2 Probabilistic relevance feedback

Rather than reweighting the query in a vector space, if a user has told us
some relevant and nonrelevant documents, then we can proceed to build a
classifier. One way of doing this is with a Naive Bayes probabilistic model.
If R is a Boolean indicator variable expressing the relevance of a document,
then we can estimate P(xt = 1|R), the probability of a term t appearing in a
document, depending on whether it is relevant or not, as:

P̂(xt = 1|R = 1) = |VRt|/|VR|(9.4)

P̂(xt = 1|R = 0) = (d ft − |VRt|)/(N − |VR|)

where N is the total number of documents, d ft is the number that contain
t, VR is the set of known relevant documents, and VRt is the subset of this
set containing t. Even though the set of known relevant documents is a per-
haps small subset of the true set of relevant documents, if we assume that
the set of relevant documents is a small subset of the set of all documents
then the estimates given above will be reasonable. This gives a basis for
another way of changing the query term weights. We will discuss such prob-
abilistic approaches more in Chapters 11 and 13, and in particular outline
the application to relevance feedback in Section 11.3.4 (page 228). For the
moment, observe that using just Equation (9.4) as a basis for term-weighting
is likely insufficient. The equations use only collection statistics and infor-
mation about the term distribution within the documents judged relevant.
They preserve no memory of the original query.

9.1.3 When does relevance feedback work?

The success of relevance feedback depends on certain assumptions. Firstly,
the user has to have sufficient knowledge to be able to make an initial query

Another formulation: Probabilistic approaches

# known-relevant documents with t # known-relevant documents

A simple naïve Bayesian model:

These probabilities can be used to re-weight any other 
probabilistic retrieval model (e.g., the Lee & Croft paper).



Explicit relevance feedback imposes work on users...

Automated local analysis methods can help!

Pseudo-relevance feedback

Local clustering

Implicit feedback



Pseudo-relevance feedback is the simplest form of 
automated local analysis.

The idea: Do retrieval as normal;

Blindly take the top k returned documents, assume relevance;

Proceed with relevance feedback as normal.

Amazingly, this (kind of) works!

Problems: susceptible to topic drift, etc.



Implicit feedback: use click-through data, etc. to determine 
relevance.

(discussed previously, and again in a future lecture)



Local clustering:

Identify possible query expansion terms by doing 
associational clustering within the retrieved result set.

Can use local context to generate more useful expansions.

Can operate at the document level, or even at the passage 
level within a document.



Manning and Schütze make a very good point:

“Relevance feedback can improve both recall and precision. But, in practice, it 
has been shown to be most useful for increasing recall in situations where 
recall is important. This is partly because the technique expands the query, but 
it is also partly an effect of the use case: when they want high recall, users can 
be expected to take time to review results and to iterate on the search.”



How should we evaluate relevance feedback?

One idea: look at MAP before and after feedback, on the 
same set of documents.

What’s wrong with this picture?

It’s cheating! For the second query, we know a priori some 
documents to include!



How should we evaluate relevance feedback?

Second idea: Evaluate on the residual collection (the set of 
documents excluding those judged by the user)

What’s wrong with this picture?

We get artificially degraded performance, since we exclude 
some of the most relevant documents.

If our goal is to compare two different RF approaches, this 
may not be an issue.



How should we evaluate relevance feedback?

Third idea: Use multiple sets of documents (“train”/”test”), 
examine post-RF query on both.

Fourth idea: Extrinsic evaluation!

Does RF help the user complete a task more quickly? Do 
they identify more relevant documents using RF? Etc. etc.



Problems with Relevance Feedback:

RF does not help with:
Mis-spellings

Mismatch of searcher’s vocabulary to collection’s 
(“laptop” vs. “notebook”)

Documents not clustering “naturally”

Relevance not being related to term distribution of 
documents

Also: users often don’t like giving explicit feedback!



A deterministic resampling method using overlapping
document clusters for pseudo-relevance feedback

Kyung Soon Lee a,⇑, W. Bruce Croft b

a Division of Computer Science and Engineering, CAIIT, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756, Republic of Korea
b Center for Intelligent Information Retrieval, Department of Computer Science, University of Massachusetts Amherst, 140 Governors Drive, Amherst, MA
01003-9264, USA

a r t i c l e i n f o

Article history:
Received 17 February 2010
Received in revised form 30 December 2012
Accepted 10 January 2013
Available online 28 February 2013

Keywords:
Information retrieval
Pseudo-relevance feedback
Relevance model
Deterministic resampling
Dominant documents
Query expansion

a b s t r a c t

Typical pseudo-relevance feedback methods assume the top-retrieved documents are rel-
evant and use these pseudo-relevant documents to expand terms. The initial retrieval set
can, however, contain a great deal of noise. In this paper, we present a cluster-based resam-
pling method to select novel pseudo-relevant documents based on Lavrenko’s relevance
model approach. The main idea is to use overlapping clusters to find dominant documents
for the initial retrieval set, and to repeatedly use these documents to emphasize the core
topics of a query.

The proposed resampling method can skip some documents in the initial high-ranked
documents and deterministically construct overlapping clusters as sampling units. The
hypothesis behind using overlapping clusters is that a good representative document for
a query may have several nearest neighbors with high similarities, participating in several
different clusters. Experimental results on large-scale web TREC collections show signifi-
cant improvements over the baseline relevance model.

To justify the proposed approach, we examine the relevance density and redundancy
ratio of feedback documents. A higher relevance density will result in greater retrieval
accuracy, ultimately approaching true relevance feedback. The resampling approach shows
higher relevance density than the baseline relevance model on all collections, resulting in
better retrieval accuracy in pseudo-relevance feedback.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most pseudo-relevance feedback methods (e.g., Attar & Fraenkel, 1977; Buckley, Salton, Allan, & Singhal, 1995; Croft &
Harper, 1979; Lavrenko & Croft, 2001; Robertson, Walker, Beaulieu, Gatford, & Payne, 1996) assume that a set of top-re-
trieved documents is relevant and then learn from the pseudo-relevant documents to expand terms or to assign better
weights to the original query. This is similar to the process used in relevance feedback, when actual relevant documents
are used (Salton & Buckley, 1990). In general, however, the top retrieved documents contain noise: when the precision of
the top 10 documents (P@10) is 0.5, this means that five of them are non-relevant. This is common and even expected in
all retrieval models. When combined with pseudo-relevance feedback, this noise, however, can cause the query representa-
tion to ‘‘drift’’ away from the original query.

This paper describes a deterministic sampling method based on overlapping clusters to select better documents for pseudo-
relevance feedback. The sampling unit is a document cluster from the initial retrieval set which can represent an aspect of a

0306-4573/$ - see front matter ! 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ipm.2013.01.001

⇑ Corresponding author. Tel.: +82 63 270 4138; fax: +82 63 270 2394.
E-mail addresses: selfsolee@jbnu.ac.kr (K.S. Lee), croft@cs.umass.edu (W.B. Croft).

Information Processing and Management 49 (2013) 792–806

Contents lists available at SciVerse ScienceDirect

Information Processing and Management

journal homepage: www.elsevier .com/ locate / infoproman



The basic idea:

Pseudo-relevance feedback (PRF) is easy to do...

... but obviously depends heavily on the relevance of the first 
several documents.

Lee & Croft’s approach: be more clever about selecting 
which documents to use for PRF.



The main idea:

Cluster result documents according to similarity;

Identify “dominant” documents (those that appear in 
multiple clusters)...

... use those to select query expansion terms.



retrieved set can be divided into several subtopic groups. A document that deals with all subtopics will likely be in all sub-
topic clusters, so we call that document dominant. From such a dominant document, terms that retrieve documents related
to all subtopics can be selected as an expanded query.

Based on the above assumption, we deterministically sample documents for feedback using k-nearest neighbors (k-NN)
clustering to generate overlapped clusters from the given top-retrieved documents space.

3.2. Deterministically resampling feedback documents using overlapping clusters

A cluster-based resampling method to get novel pseudo-relevant documents is based on the language model (Ponte &
Croft, 1998), the cluster-based language model (Liu & Croft, 2004), and the relevance model (Lavrenko & Croft, 2001) frame-
works. The essential point of our approach is that a document that appears in multiple highly-ranked clusters will contribute
more to the query terms than other documents. The resampling process proceeds as follows:

(1) Deterministically constructing a sample space by selecting top-ranked N documents for each query based on language
model from the collection of documents.

(2) Deterministically constructing sampling units by k-NN clustering based on the similarities of documents in the sample
space.

(3) Deterministically sampling clusters by selecting top-ranked M clusters based on the cluster-based language model. All
the documents in the top M clusters are selected as feedback documents with redundancy which means one document
can be selected more than twice.

(4) Deterministically sampling expansion terms by selecting top-ranked E terms based on the relevance model.

The following are the details of each step.

3.2.1. Constructing a sample space
First, documents are retrieved for a given query by the query-likelihood language model (Ponte & Croft, 1998) with

Dirichlet smoothing (Zhai & Lafferty, 2004). The sample space consists of the top-retrieved N documents from the collection
of documents. (In our experiments, the size of sample space N is set to 100.)

A statistical language model is a probabilistic distribution over all the possible word sequences for generating a piece of
text. In information retrieval, the language model treats documents themselves as models and a query as strings of text gen-
erated from these document models. The popular query-likelihood retrieval model estimates document language models
using the maximum likelihood estimator. The documents can be ranked by their likelihood of generating or sampling the
query from document language models: P(Q|D).

PðQ jDÞ ¼
Ym

i¼1

PðqijDÞ ð1Þ

where qi is the ith query term, m is the number of words in a query Q, and D is a document model.
Dirichlet smoothing is used to estimate non-zero values for terms in the query which are not in a document. It is applied

to the query likelihood language model as follows.

PðwjDÞ ¼ jDj
jDjþ l PMLðwjDÞ þ

l
jDjþ l PMLðwjCollÞ ð2Þ

PMLðwjDÞ ¼
freqðw;DÞ
jDj ; PMLðwjCollÞ ¼ freqðw;CollÞ

jCollj ð3Þ

where PML(w|D) is the maximum likelihood estimate of word w in the document D, Coll is the entire collection, and l is the
smoothing parameter. |D| and |Coll| are the lengths of a document D and collection C, respectively. freq(w,D) and freq(w,Coll)
denote the frequency of a word w in D and Coll, respectively. The smoothing parameter is learned using training topics on
each collection in experiments.

3.2.2. Constructing sampling units
Next, clusters are generated by the k nearest neighbors (k-NN) clustering method (Fix & Hodges, 1951) for documents in

the sample space to find dominant documents. Here, a sampling unit is that cluster considered for selection in the next stage
of sampling. Note that one document can belong to several clusters.

In k-NN clustering, each document plays a central role in making its own cluster with its k closest neighbors by similarity.
We represent a document using tf.idf weighting and cosine normalization. The cosine similarity is used to calculate similar-
ities among the top-retrieved documents.

Our hypothesis is that a dominant document may have several nearest neighbors with high similarities, participating in
several clusters. On the other hand, a non-relevant document ideally makes a singleton cluster with no nearest neighbors
with high similarity, though in practice it will have neighbors due to noise such as polysemous or general terms. Document
clusters can also reflect the association of terms and documents from similarity calculation. In this work, if a document is a

K.S. Lee, W.B. Croft / Information Processing and Management 49 (2013) 792–806 795

The initial set of results is produced using standard language 
model-based retrieval:

The initial set of results is produced using standard language 
model-based retrieval.

The results are k-means clustered, and then each cluster is 
sampled...

member of several clusters and the clusters are highly related to the query, we assume it to be a dominant document. The
cluster-based resampling method repeatedly uses such dominant documents based on document clusters.

3.2.3. Deterministically sampling clusters
After forming clusters as sampling units, the clusters are ranked by the cluster-based language model (Liu & Croft, 2004)

described below. The top-ranked M clusters are selected. All the documents in the sampled clusters are used for feedback
with redundancy. Note that clusters are used only for selecting feedback documents.

A cluster can be treated as a large document so that we can use the successful query-likelihood retrieval model. Intui-
tively, each cluster can be represented by just concatenating documents which belong to the cluster. If Clu represents such
a cluster, then:

PðQ jCluÞ ¼
Ym

i¼1

PðqijCluÞ ð4Þ

PðwjCluÞ ¼ jCluj
jClujþ k

PMLðwjCluÞ þ k
jClujþ k

PMLðwjCollÞ ð5Þ

PMLðwjCluÞ ¼ freqðw; CluÞ
jCluj

; PMLðwjCollÞ ¼ freqðw;CollÞ
jCollj

ð6Þ

where freq(w,Clu) is sum of freq(w,D) for the document D which belongs to the cluster Clu.

3.2.4. Sampling expansion terms
Finally, expansion terms are selected using the relevance model for each document in the sampled clusters. Note that the

set of feedback documents chosen from the selected clusters are used to estimate the relevance model with their initial
query-likelihood probabilities.

A relevance model is a query expansion approach based on the language modeling framework. Relevance models have
been shown to be a powerful way to construct a query model from the top-retrieved documents (Diaz & Metzler, 2006; Lav-
renko & Croft, 2001). The relevance model is a multinomial distribution which estimates the likelihood of a word w given a
query Q. In the model, the query words q1 . . .qm and any word w in relevant documents are sampled identically and inde-
pendently from a distribution R. Following that work, we estimate the probability of a word in the distribution R using

PðwjRÞ ¼
X

D2R

PðDÞPðwjDÞPðQ jDÞ ð7Þ

where R is the set of documents that are pseudo-relevant to the query Q. We assume that P(D) is uniform over the set.
After this estimation, the most likely e terms from P(w|R) are deterministically selected as the expansion terms for an

original query. The final expanded query is combined with the original query using linear interpolation, weighted by a
parameter k. The combining parameter is learned using training topics on each collection in the experiments.

The original relevance model and traditional pseudo-relevance feedback methods use the initial retrieval set to get expan-
sion terms directly after the first step. The problem is that the top-retrieved documents contain non-relevant documents,
which add noise to expansion terms. Our effort uses overlapping clusters to reuse dominant documents and to skip non-
dominant documents for the query to emphasize good representative terms in dominant documents and to deemphasize
terms in non-dominant documents. It may still find non-relevant documents, but we will show it finds fewer of them.

4. Experiments

To validate the proposed method, we performed experiments on five TREC collections and compared the results with a
baseline retrieval model, a baseline feedback model, and an upper-bound model.

4.1. Experimental set-up

4.1.1. Test collections
We tested the proposed method on homogeneous and heterogeneous test collections: the ROBUST, AP and WSJ collec-

tions are smaller and contain newswire articles, whereas GOV2 and WT10G are larger web collections. For all collections,
the topic title field is used as the query. A summary of the test collections is shown in Table 1.

Version 2.3 of the Indri system (Strohman, Metzler, Turtle, & Croft, 2005) is used for indexing and retrieval. All collections
are stemmed using a Porter stemmer. A standard list of 418 common words is removed at retrieval time.

4.1.2. Training and evaluation
For each test collection, we divide topics into training topics and test topics, where the training topics are used for param-

eter estimation and the test topics are used for evaluation. The sample space, which is the initial retrieval set (the size is set
to 100), is deterministically constructed by the language model for each query from the document collection.

In order to find the best parameter settings, we sweep over values of the smoothing parameter for the language model
(l 2 {500,750,1000,1500,2000, . . . ,5000}), the number of feedback documents which can be deterministically selected from

796 K.S. Lee, W.B. Croft / Information Processing and Management 49 (2013) 792–806



2006). The resampling method is based on the relevance model framework. The difference is the pseudo-relevant docu-
ments used.

4.1.3.2. Upper-bound: true relevance feedback. To investigate the performance of the upper-bound of the proposed method,
we compare with true relevance feedback.

! True relevance feedback (TrueRF): The performance using actual relevant documents in the top-retrieved 100 documents,
where relevance is determined by the provided TREC judgments. This performance presents the upper-bound when using
the relevance model.

4.1.3.3. A cluster-based reranking method. To provide the effectiveness of clusters for the initial retrieval set, we also include a
cluster-based reranking method.

! Reranking using clusters (Rerank): The performance of reranking by combining query likelihoods for documents and clus-
ters based on k-NN clusters for the top-retrieved N documents. N and k are set to 1000 and 5, respectively.

P0ðQ jDÞ ¼ PðQ jDÞ %MAXD2Clui
PðQ jCluiÞ ð10Þ

Since a dominant document can be a member of several clusters, we choose the maximum query likelihood for the clusters
Clu which the document D belongs to. The cluster-based reranking method (Lee et al., 2004) based on the vector-space model
has shown good results. Here we applied the reranking method to the language model.

We also compared the cluster-based language model (CBLM) by linear combination of Liu and Croft (2004).

PðwjDÞ ¼ kPMLðwjDÞ þ ð1' kÞPMLðwjCluÞ ¼ kPMLðwjDÞ þ ð1' kÞ½bPMLðwjCluÞ þ ð1' bÞPMLðwjCollÞ) ð11Þ

PMLðwjCluÞ ¼
freqðw; CluÞ
jCluj ð12Þ

where PML(w|D) is the maximum likelihood estimate of word w in the cluster Clu. |Clu| is the length of a cluster Clu. Eq. (11) of
the cluster-based language model corresponds to Eq. (2) of the language model.

The reranking method shows the effects of dominant documents without the feedback procedure.

4.2. Experimental results

The results for the comparison methods on five test collections are presented in Table 3. The Resampling method signif-
icantly outperforms LM on all test collections, whereas RM does not significantly outperform LM on WT10g collection. For
GOV2 and WT10g heterogeneous web test collections, Resampling significantly outperforms RM. The relative improvements
over RM are 6.28% and 19.63% on GOV2 and WT10g, respectively. For the ROBUST newswire collection, Resampling shows
slightly lower performance than RM. For AP and WSJ newswire collections, Resampling shows small, but not significant
improvements over RM. In the precision at 5 (P@5) evaluation metric as shown in Table 6, Resampling shows 14.8%,
24.7%, 3.9%, 20.0%, and 11.9% improvements over LM, whereas RM shows '7.1%, 7.4%, 1.6%, 18.8% and 7.4% improvement
on GOV2, WT10g, ROBUST04, AP and WSJ collections, respectively.

The Rerank method using clusters shows significant improvements over LM on all test collections. In fact, Rerank outper-
forms RM on WT10g collection. The results indicate that document clustering can help find relevant document groups for the
initial retrieval set and provide implicit document context to the query. The dominant documents play a central role in build-
ing relevant groups. As shown in Table 4, we conducted an experiment to compare the cluster-based language model by lin-
ear combination of Liu and Croft (2004) in Eq. (11) to show a strong baseline for cluster-based reranking. The proposed
reranking method outperforms the reranking by linear combination.

TrueRF shows significant improvements over all methods on test collections. The results provide upper-bound perfor-
mance on each collection, showing what might happen if we are able to choose better pseudo-relevant documents,
approaching the set of true relevant documents.

Table 3
Performance comparisons using mean average precision for the test topics on test collections. The superscripts a, b, c and d indicate statistically significant
improvements over LM, Rerank, RM and Resampling, respectively. We use the paired t-test with significance at p < 0.05.

Collection LM Rerank RM Resampling TrueRF

GOV2 0.3258 0.3406a 0.3581ab 0.3806abc 0.4315abcd

WT10g 0.1861 0.2044a 0.1966 0.2352abc 0.4030abcd

ROBUST 0.2920 0.3206a 0.3591ab 0.3515ab 0.5351abcd

AP 0.2077 0.2361a 0.2803ab 0.2906ab 0.4253abcd

WSJ 0.3258 0.3611a 0.3967ab 0.4033ab 0.5306abcd

798 K.S. Lee, W.B. Croft / Information Processing and Management 49 (2013) 792–806


