Index Construction & Compression: Agenda

- Practical considerations
- Building indices
 - Static indexing approaches
 - Dynamic indexing
- Storing indices
 - Dictionary compression
 - Posting list compression

Our friend, the inverted index:

Basic steps to for building an index:

- 1. Pass through collection, pair terms and docIDs
- 2. Group docIDs by term
- 3. Convert <term, docID> tuples to <term, [docID...]> tuples; calculate other misc. statistics

When the collection can fit in memory, this is very simple...

One measurement motivates most index construction & compression techniques:

Statistic	Value
average seek time	$5 \text{ ms} = 5 \times 10^{-3} \text{ s}$
transfer time per byte	$0.02 \ \mu s = 2 \times 10^{-8} s$
processor's clock rate	$10^9 { m s}^{-1}$
lowlevel operation	
(e.g., compare & swap a word)	$0.01~\mu{ m s} = 10^{-8}~{ m s}$

$$10^{-3} \gg 10^{-8}$$

The central idea:

If we can't fit everything in memory... ... we'll need to use a disk-based *external sorting algorithm*...

... and do it in such a way as to minimize disk seeks.

Disks store data in contiguous chunks, or "blocks"...

... and that's how operating systems get data from disks.

Blocked sort-based indexing (BBSI)

The basic idea: make many block-sized indices, and then merge them.

BSBINDEXCONSTRUCTION() *

- 1 $n \leftarrow 0$
- 2 while (all documents have not been processed)
- 3 **do** $n \leftarrow n+1$
- 4 $block \leftarrow ParseNextBlock()$
- 5 BSBI-INVERT(block)
- 6 WRITEBLOCKTODISK(*block*, f_n)
- 7 MERGEBLOCKS $(f_1, \ldots, f_n; f_{merged})$

postings lists

* We also have to do a separate, full pass through the collection to assemble the dictionary and compute termIDs.

Blocked sort-based indexing (BBSI)

BBSI has an important limitation:

Even though the postings are split up by block size... ... the dictionary is not.

We still must maintain a term->termID data structure that is shared by all blocks, and this might not fit in memory.

Single-pass in-memory indexing (SPIMI)

The basic idea: make many *independent* block-sized indices, and then merge them.

SPIMI-INVERT(*token_stream*)

- 1 *output_file* = NEWFILE()
- 2 *dictionary* = NEWHASH()
- 3 while (free memory available)
- 4 **do** token \leftarrow next(token_stream)
- 5 **if** $term(token) \notin dictionary$
- 6 **then** *postings_list* = ADDTODICTIONARY(*dictionary,term*(*token*))
- 7 **else** *postings_list* = GETPOSTINGSLIST(*dictionary*, *term*(*token*))
- 8 **if** *full*(*postings_list*)
- 9 **then** *postings_list* = DOUBLEPOSTINGSLIST(*dictionary,term*(*token*))
- 10 ADDTOPOSTINGSLIST(*postings_list, docID(token*))
- 11 *sorted_terms* \leftarrow SORTTERMS(*dictionary*)
- 12 WRITEBLOCKTODISK(*sorted_terms, dictionary, output_file*)
- 13 **return** *output_file*

Key difference: uses raw terms instead of shared termIDs, so each block has its own dictionary.

Also: lower overhead, so larger blocks can be processed.

For very large collections, it may make sense to distribute indexing across multiple computers.

Map-Reduce is a common distributed-computing paradigm.

Figure from Lin & Dyer 2010.

1: c	lass Mapper
2:	procedure MAP(docid n , doc d)
3:	$H \leftarrow \text{new AssociativeArray}$
4:	for all term $t \in \operatorname{doc} d$ do
5:	$H\{t\} \leftarrow H\{t\} + 1$
6:	for all term $t \in H$ do
7:	EMIT(term t, posting $\langle n, H\{t\} \rangle$)
1: c	lass Reducer
2:	procedure REDUCE(term <i>t</i> , postings $[\langle n_1, f_1 \rangle, \langle n_2, f_2 \rangle \dots])$
3:	$P \leftarrow \text{new List}$
4:	for all posting $\langle a, f \rangle \in \text{postings} [\langle n_1, f_1 \rangle, \langle n_2, f_2 \rangle \dots]$ do
5:	$P.Add(\langle a, f \rangle)$
6:	P.Sort()

7: EMIT(term t, postings P)

Figure from Lin & Dyer 2010.

Figure from Lin & Dyer 2010.

Figure from Lin & Dyer 2010.

What happens when new data needs to be added to an index?

- 1. Maintain an "auxiliary index" containing the new data, query both, and merge periodically;
- 2. Build a second full index periodically and "switch over" when it's done.

Option 1 is attractive but complex; option 2 is less flexible and expensive but is simpler.

How to represent auxiliary index?

The easiest way is as a large collection of posting filesthen, merging is just a simple append operation.

However, most file systems don't appreciate having millions of files (also disk seek time, etc.).

So, the tradeoff is: for merge speed, we want as small an auxiliary index as possible...

... but large enough to not run into storage-related complications; also, we want to minimize merges.

Also, the naïve approach results in overall $O(T^2)$ index construction time (because each posting list has to be merged in each merge).

Can we do better?

Solution: Logarithmic merging.

- Maintain a series of indexes, each twice as large as the previous one
 - At any time, some of these powers of 2 are instantiated
- Keep smallest (Z₀) in memory
- Larger ones (I₀, I₁, ...) on disk
- If Z₀ gets too big (> n), write to disk as I₀
- or merge with I₀ (if I₀ already exists) as Z₁
- Either write merge Z₁ to disk as I₁ (if no I₁)
- Or merge with I₁ to form Z₂

Taken from Manning, et al.'s slides on the subject.

Solution: Logarithmic merging.

Index construction is now O(TlogT) on average, since each posting is only merged logT times...

But query performance just went down: we have to merge log T indices to deliver results.

Also, it is now much harder to maintain collection-wide statistics (needed for spelling suggestion, result ranking, etc.).

Index Construction & Compression: Agenda

- Practical considerations
- Building indices
 - Static indexing approaches
 - Dynamic indexing
- Storing indices
 - Dictionary compression
 - Posting list compression

Why compress?

The obvious answer: to save disk space.

A less obvious answer: to keep more data in the computer's cache.

Statistic	Value
average seek time	$5 \text{ ms} = 5 \times 10^{-3} \text{ s}$
transfer time per byte	$0.02 \ \mu s = 2 \times 10^{-8} s$
processor's clock rate	$10^9 { m s}^{-1}$
lowlevel operation	
(e.g., compare & swap a word)	$0.01 \ \mu s = 10^{-8} \ s$

We can decompress data much faster than the disk can get it to us!

There are two ways to compress an index:

There are two ways to compress an index:

Pre-processing is one approach to dictionary compression:

(distinct)) terms
------------	---------

	number	$\Delta\%$	Τ%
unfiltered	484,494		
no numbers	473,723	-2	-2
case folding	391,523	-17	-19
30 stop words	391,493	-0	-19
150 stop words	391,373	-0	-19
stemming	322,383	-17	-33

Fewer dictionary terms == smaller dictionary, fewer posting lists, etc.

Note that this is language-dependent!

	(distinct) terms			nonpositional postings			
	number	$\Delta\%$	Т%	number	$\Delta\%$	Т%	
unfiltered	484,494			109,971,179			
no numbers	473,723	-2	-2	100,680,242	-8	-8	
case folding	391,523	-17	-19	96,969,056	-3	-12	
30 stop words	391,493	-0	-19	83,390,443	-14	-24	
150 stop words	391,373	-0	-19	67,001,847	-30	-39	
stemming	322,383	-17	-33	63,812,300	-4	-42	

How to estimate the number of terms in a collection?

Counting the number of distinct words in, say, the OED is a tempting way to start...

... but often results in dramatically under-estimated counts.

(Think names of places, products, genes/proteins, etc.)

How to estimate the number of terms in a collection?

Heaps' law curve for vocab size *M* in collection of size *T* tokens.

How to estimate the number of terms in a collection?

Implication: M increases continually (i.e., doesn't plateau once the collection gets to a certain size).

https://en.wikipedia.org/wiki/Heaps'_law

What about term distribution within collection?

$$\mathrm{cf}_i \propto \frac{1}{i}$$

Zipf's law: collection frequency of a term decreases rapidly with rank.

What about term distribution within collection?

Implication: A small number of terms are very common; most are rare.

The point of dictionary compression:

Fit as much of the dictionary as possible in main memory.

Because of Heap's law, large collections will have large dictionaries...

... and many search engines are multilingual!

Warning: here there be pointers...

Warning: here there be caveats...

#1: For the rest of today, we shall pretend that all text is ASCII.

Warning: here there be caveats...

Also: the book uses a 32-bit address space. Large collections need more.

The simplest possible dictionary structure:

	term	document	pointer to
		frequency	postings list
	a	656,265	\longrightarrow
	aachen	65	\longrightarrow
	•••	• • •	•••
	zulu	221	\longrightarrow
space needed:	20 bytes	4 bytes	4 bytes

In RCV1*, 11.2 MB needed to store 400,000 dictionary entries.

RCV1: "Reuters Corpus Volume 1," a newswire corpus.

The simplest possible dictionary structure:

	term	document	pointer to
		frequency	postings list
	a	656,265	\longrightarrow
	aachen	65	\longrightarrow
	•••	• • •	• • •
	zulu	221	\longrightarrow
space needed:	20 bytes	4 bytes	4 bytes

Fixed-width entries are both wasteful and limiting, but are simple to implement.

Next: dictionary-as-a-string

... systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono...

freq.	postings ptr.	term ptr.	
9	\rightarrow		
92	\rightarrow		
5	\rightarrow		
71	\rightarrow		
12	\rightarrow		
• • •	• • •	• • •	
4 bytes	4 bytes	3 bytes	

In RCV1, 7.6 MB needed to store 400,000 dictionary entries.

Next: dictionary-as-a-string

... systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono...

1 hytos	1 bytes	3 hytos	
		•••	
12	\rightarrow		
71	\rightarrow		
5	\rightarrow		
92	\rightarrow	/ /	
9	\rightarrow	/ /	
freq.	postings ptr.	term ptr.	

Some of the space saved by the variable width is offset by the need for term pointers.

Blocked storage:

Pick blocks of size *k*, and only store pointer to first term of each block. Add in-band term lengths to dictionary string.

Blocked storage:

This saves *k* - 1 term pointers, but adds *k* bytes for term lengths.

Blocked storage:

For RCV1, we are now down to 7.1 megabytes.

But there is always a tradeoff: Term lookup now takes more time.

job win

(a)

Seeking through the uncompressed dictionary involves on average 25% fewer steps.

(b) aid box den ex job ox pit win

Front coding takes advantage of common prefixes to save space.

One block in blocked compression $(k = 4) \dots$ 8 automata8 automate9 automatic10 automation

 \Downarrow

... further compressed with front coding. 8automat*a1 \diamond e2 \diamond ic3 \diamond ion

Dictionary compression for Reuters-RCV1	•
data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k = 4$	7.1
\sim , with blocking & front coding	5.9

There are two ways to compress an index:

Simplest approach to posting list:

Store lists of complete docIDs.

RCV1 has 800,000 documents, so we need $\log_2 800,000 = 20$ bits per docID.

Approximately 250 MB uncompressed.

800,000 is tiny; bigger collections need more bits per docID (many more).

Key observation: postings for frequent terms are often close together in the collection.

What if we store *gaps* or *offsets* between docIDs rather than docIDs themselves?

	encoding	postings	list							
the	docIDs	•••		283042		283043		283044		283045
	gaps				1		1		1	
computer	docIDs	• • •		283047		283154		283159		283202
	gaps				107		5		43	
arachnocentric	docIDs	252000		500100						
	gaps	252000	248100							

Many words wouldn't need a full 20 bits to be represented...

We can use a variable byte code to more efficiently use space:

docIDs824829215406gaps5214577VB code00000110101100010000101000011010000110010100001

Figure 5.8 in the book gives an example algorithm...

Using this scheme achieves >50% reduction in posting list space (down to 116 MB).

In practice, these schemes can be applied to different units than bytes (16-bit words, etc.).

Variable-byte encodings are simple and work well... but can we do better?

Yes, by using bit-level encodings (like the γ encoding).

But is it *enough* better to be worth the significant hassle? Probably not.

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k = 4$	7.1
\sim , with blocking & front coding	5.9
collection (text, xml markup etc)	3600.0
collection (text)	960.0
term incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

Next up: Experimental evaluation.

