
Index Construction & Compression: Agenda

• Practical considerations

• Building indices

• Static indexing approaches

• Dynamic indexing

• Storing indices

• Dictionary compression

• Posting list compression

Our friend, the inverted index:

Online edition (c) 2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Dictionary Postings lists

Basic steps to for building an index:

1. Pass through collection, pair terms and docIDs

2. Group docIDs by term

3. Convert <term, docID> tuples to <term, [docID...]>
tuples; calculate other misc. statistics

When the collection can fit in memory, this
is very simple...

Online edition (c) 2009 Cambridge UP

68 4 Index construction

! Table 4.1 Typical system parameters in 2007. The seek time is the time needed
to position the disk head in a new position. The transfer time per byte is the rate of
transfer from disk to memory when the head is in the right position.

Symbol Statistic Value
s average seek time 5 ms = 5 × 10−3 s
b transfer time per byte 0.02 µs = 2 × 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation
(e.g., compare & swap a word) 0.01 µs = 10−8 s

size of main memory several GB
size of disk space 1 TB or more

4.1 Hardware basics

When building an information retrieval (IR) system, many decisions are based
on the characteristics of the computer hardware on which the system runs.
We therefore begin this chapter with a brief review of computer hardware.
Performance characteristics typical of systems in 2007 are shown in Table 4.1.
A list of hardware basics that we need in this book to motivate IR system
design follows.

• Access to data in memory is much faster than access to data on disk. It
takes a few clock cycles (perhaps 5 × 10−9 seconds) to access a byte in
memory, but much longer to transfer it from disk (about 2 × 10−8 sec-
onds). Consequently, we want to keep as much data as possible in mem-
ory, especially those data that we need to access frequently. We call the
technique of keeping frequently used disk data in main memory caching.CACHING

• When doing a disk read or write, it takes a while for the disk head to
move to the part of the disk where the data are located. This time is called
the seek time and it averages 5 ms for typical disks. No data are beingSEEK TIME

transferred during the seek. To maximize data transfer rates, chunks of
data that will be read together should therefore be stored contiguously on
disk. For example, using the numbers in Table 4.1 it may take as little as
0.2 seconds to transfer 10 megabytes (MB) from disk to memory if it is
stored as one chunk, but up to 0.2 + 100 × (5 × 10−3) = 0.7 seconds if it
is stored in 100 noncontiguous chunks because we need to move the disk
head up to 100 times.

• Operating systems generally read and write entire blocks. Thus, reading
a single byte from disk can take as much time as reading the entire block.

One measurement motivates most index
construction & compression techniques:

10�3
o 10�8

The central idea:
If we can’t fit everything in memory...

... and do it in such a way as to
minimize disk seeks.

Disks store data in contiguous chunks, or “blocks”...

... and that’s how operating systems get data from disks.

... we’ll need to use a disk-based external sorting
algorithm...

Blocked sort-based indexing (BBSI)

The basic idea: make many block-sized indices, and
then merge them.

Online edition (c) 2009 Cambridge UP

72 4 Index construction

brutus d1,d3

caesar d1,d2,d4

noble d5

with d1,d2,d3,d5

brutus d6,d7

caesar d8,d9

julius d10

killed d8

postings lists
to be merged

brutus d1,d3,d6,d7

caesar d1,d2,d4,d8,d9

julius d10

killed d8

noble d5

with d1,d2,d3,d5

merged
postings lists

disk

! Figure 4.3 Merging in blocked sort-based indexing. Two blocks (“postings lists to
be merged”) are loaded from disk into memory, merged in memory (“merged post-
ings lists”) and written back to disk. We show terms instead of termIDs for better
readability.

the actual indexing time is usually dominated by the time it takes to parse the
documents (PARSENEXTBLOCK) and to do the final merge (MERGEBLOCKS).
Exercise 4.6 asks you to compute the total index construction time for RCV1
that includes these steps as well as inverting the blocks and writing them to
disk.

Notice that Reuters-RCV1 is not particularly large in an age when one or
more GB of memory are standard on personal computers. With appropriate
compression (Chapter 5), we could have created an inverted index for RCV1
in memory on a not overly beefy server. The techniques we have described
are needed, however, for collections that are several orders of magnitude
larger.

? Exercise 4.1

If we need T log2 T comparisons (where T is the number of termID–docID pairs) and
two disk seeks for each comparison, how much time would index construction for
Reuters-RCV1 take if we used disk instead of memory for storage and an unopti-
mized sorting algorithm (i.e., not an external sorting algorithm)? Use the system
parameters in Table 4.1.

Exercise 4.2 [⋆]

How would you create the dictionary in blocked sort-based indexing on the fly to
avoid an extra pass through the data?

Online edition (c) 2009 Cambridge UP

4.2 Blocked sort-based indexing 71

BSBINDEXCONSTRUCTION()
1 n ← 0
2 while (all documents have not been processed)
3 do n ← n + 1
4 block ← PARSENEXTBLOCK()
5 BSBI-INVERT(block)
6 WRITEBLOCKTODISK(block, fn)
7 MERGEBLOCKS(f1, . . . , fn; f merged)

! Figure 4.2 Blocked sort-based indexing. The algorithm stores inverted blocks in
files f1, . . . , fn and the merged index in f merged.

ment of such an algorithm is that it minimize the number of random disk
seeks during sorting – sequential disk reads are far faster than seeks as we
explained in Section 4.1. One solution is the blocked sort-based indexing algo-BLOCKED SORT-BASED

INDEXING ALGORITHM rithm or BSBI in Figure 4.2. BSBI (i) segments the collection into parts of equal
size, (ii) sorts the termID–docID pairs of each part in memory, (iii) stores in-
termediate sorted results on disk, and (iv) merges all intermediate results
into the final index.

The algorithm parses documents into termID–docID pairs and accumu-
lates the pairs in memory until a block of a fixed size is full (PARSENEXTBLOCK
in Figure 4.2). We choose the block size to fit comfortably into memory to
permit a fast in-memory sort. The block is then inverted and written to disk.
Inversion involves two steps. First, we sort the termID–docID pairs. Next,INVERSION

we collect all termID–docID pairs with the same termID into a postings list,
where a posting is simply a docID. The result, an inverted index for the blockPOSTING

we have just read, is then written to disk. Applying this to Reuters-RCV1 and
assuming we can fit 10 million termID–docID pairs into memory, we end up
with ten blocks, each an inverted index of one part of the collection.

In the final step, the algorithm simultaneously merges the ten blocks into
one large merged index. An example with two blocks is shown in Figure 4.3,
where we use di to denote the ith document of the collection. To do the merg-
ing, we open all block files simultaneously, and maintain small read buffers
for the ten blocks we are reading and a write buffer for the final merged in-
dex we are writing. In each iteration, we select the lowest termID that has
not been processed yet using a priority queue or a similar data structure. All
postings lists for this termID are read and merged, and the merged list is
written back to disk. Each read buffer is refilled from its file when necessary.

How expensive is BSBI? Its time complexity is Θ(T log T) because the step
with the highest time complexity is sorting and T is an upper bound for the
number of items we must sort (i.e., the number of termID–docID pairs). But

*

* We also have to do a separate, full pass
through the collection to assemble the
dictionary and compute termIDs.

Blocked sort-based indexing (BBSI)

BBSI has an important limitation:

Even though the postings are split up by block size...

... the dictionary is not.

We still must maintain a term->termID data structure that
is shared by all blocks, and this might not fit in memory.

Single-pass in-memory indexing (SPIMI)

The basic idea: make many independent block-sized
indices, and then merge them.

Online edition (c) 2009 Cambridge UP

4.3 Single-pass in-memory indexing 73

SPIMI-INVERT(token_stream)
1 output_ f ile = NEWFILE()
2 dictionary = NEWHASH()
3 while (free memory available)
4 do token ← next(token_stream)
5 if term(token) /∈ dictionary
6 then postings_list = ADDTODICTIONARY(dictionary, term(token))
7 else postings_list = GETPOSTINGSLIST(dictionary, term(token))
8 if f ull(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))

10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms ← SORTTERMS(dictionary)
12 WRITEBLOCKTODISK(sorted_terms, dictionary, output_ f ile)
13 return output_ f ile

! Figure 4.4 Inversion of a block in single-pass in-memory indexing

4.3 Single-pass in-memory indexing

Blocked sort-based indexing has excellent scaling properties, but it needs
a data structure for mapping terms to termIDs. For very large collections,
this data structure does not fit into memory. A more scalable alternative is
single-pass in-memory indexing or SPIMI. SPIMI uses terms instead of termIDs,SINGLE-PASS

IN-MEMORY INDEXING writes each block’s dictionary to disk, and then starts a new dictionary for the
next block. SPIMI can index collections of any size as long as there is enough
disk space available.

The SPIMI algorithm is shown in Figure 4.4. The part of the algorithm that
parses documents and turns them into a stream of term–docID pairs, which
we call tokens here, has been omitted. SPIMI-INVERT is called repeatedly on
the token stream until the entire collection has been processed.

Tokens are processed one by one (line 4) during each successive call of
SPIMI-INVERT. When a term occurs for the first time, it is added to the
dictionary (best implemented as a hash), and a new postings list is created
(line 6). The call in line 7 returns this postings list for subsequent occurrences
of the term.

A difference between BSBI and SPIMI is that SPIMI adds a posting di-
rectly to its postings list (line 10). Instead of first collecting all termID–docID
pairs and then sorting them (as we did in BSBI), each postings list is dynamic
(i.e., its size is adjusted as it grows) and it is immediately available to collect
postings. This has two advantages: It is faster because there is no sorting
required, and it saves memory because we keep track of the term a postings

Key difference: uses raw terms instead of shared termIDs, so
each block has its own dictionary.

Also: lower overhead, so larger blocks can be processed.

Distributed Indexing:

For very large collections, it may make sense to
distribute indexing across multiple computers.

Map-Reduce is a common distributed-computing
paradigm.

22 2. MAPREDUCE BASICS

A B C D E F� � � � � �

b1 2 3 6 5 2 b 7 8

mapper mapper mapper mapper

Shuffle and Sort: aggregate values by keys

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 9 8

reducer reducer reducer

X 5 Y 7 Z 9

Figure 2.2: Simplified view of MapReduce. Mappers are applied to all input key-value pairs, which
generate an arbitrary number of intermediate key-value pairs. Reducers are applied to all values associated
with the same key. Between the map and reduce phases lies a barrier that involves a large distributed sort
and group by.

1: class Mapper
2: method Map(docid a, doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum ← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum ← sum + c

6: Emit(term t, count sum)

Figure 2.3: Pseudo-code for the word count algorithm in MapReduce.The mapper emits an intermediate
key-value pair for each word in a document. The reducer sums up all counts for each word.

Figure from Lin & Dyer 2010.

Distributed Indexing:

Figure from Lin & Dyer 2010.

70 4. INVERTED INDEXING FOR TEXT RETRIEVAL

1: class Mapper
2: procedure Map(docid n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t} ← H {t} + 1

6: for all term t ∈ H do
7: Emit(term t, posting ⟨n, H {t}⟩)
1: class Reducer
2: procedure Reduce(term t, postings [⟨n1, f1⟩, ⟨n2, f2⟩ . . .])
3: P ← new List
4: for all posting ⟨a, f ⟩ ∈ postings [⟨n1, f1⟩, ⟨n2, f2⟩ . . .] do
5: P.Add(⟨a, f ⟩)
6: P.Sort()

7: Emit(term t, postings P)

Figure 4.2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce. Mappers emit
postings keyed by terms, the execution framework groups postings by term, and the reducers write
postings lists to disk.

Once the document has been analyzed, term frequencies are computed by iterating over all the terms
and keeping track of counts. Lines 4 and 5 in the pseudo-code reflect the process of computing term
frequencies, but hides the details of document processing. After this histogram has been built, the
mapper then iterates over all terms. For each term, a pair consisting of the document id and the term
frequency is created. Each pair, denoted by ⟨n, H {t}⟩ in the pseudo-code, represents an individual
posting. The mapper then emits an intermediate key-value pair with the term as the key and the
posting as the value, in line 7 of the mapper pseudo-code. Although as presented here only the
term frequency is stored in the posting, this algorithm can be easily augmented to store additional
information (e.g., term positions) in the payload.

In the shuffle and sort phase, the MapReduce runtime essentially performs a large, distributed
group by of the postings by term. Without any additional effort by the programmer, the execution
framework brings together all the postings that belong in the same postings list. This tremendously
simplifies the task of the reducer, which simply needs to gather together all the postings and write
them to disk.The reducer begins by initializing an empty list and then appends all postings associated
with the same key (term) to the list. The postings are then sorted by document id, and the entire
postings list is emitted as a value, with the term as the key. Typically, the postings list is first
compressed, but we leave this aside for now (see Section 4.4 for more details). The final key-value
pairs are written to disk and comprise the inverted index. Since each reducer writes its output in
a separate file in the distributed file system, our final index will be split across r files, where r is

Distributed Indexing:

Figure from Lin & Dyer 2010.

4.3. INVERTED INDEXING: BASELINE IMPLEMENTATION 71

one fish, two fish
doc 1

red fish, blue fish
doc 2

one red bird
doc 3

mapper mapper mapper

d1 2fish

d1 1one

d1 1two

d2 1blue

d2 2fish

d2 1red

d3 1bird

d3 1one

d3 1red

reducer

d1 1two d2 1red d3 1red

Shuffle and Sort: aggregate values by keys

reducer reducerreducer

d1 2fish d2 2 d3 1bird

d1 1one

d1 1two

d2 1blue

d2 1red d3 1

d3 1

Figure 4.3: Simple illustration of the baseline inverted indexing algorithm in MapReduce with three
mappers and two reducers. Postings are shown as pairs of boxes (docid, tf).

the number of reducers. There is no need to further consolidate these files. Separately, we must also
build an index to the postings lists themselves for the retrieval engine: this is typically in the form
of mappings from term to (file, byte offset) pairs, so that given a term, the retrieval engine can fetch
its postings list by opening the appropriate file and seeking to the correct byte offset position in that
file.

Execution of the complete algorithm is illustrated in Figure 4.3 with a toy example consisting of
three documents, three mappers, and two reducers. Intermediate key-value pairs (from the mappers)
and the final key-value pairs comprising the inverted index (from the reducers) are shown in the
boxes with dotted lines. Postings are shown as pairs of boxes, with the document id on the left and
the term frequency on the right.

The MapReduce programming model provides a very concise expression of the inverted
indexing algorithm. Its implementation is similarly concise: the basic algorithm can be implemented
in as few as a couple dozen lines of code in Hadoop (with minimal document processing). Such an
implementation can be completed as a week-long programming assignment in a course for advanced
undergraduates or first-year graduate students [83; 93]. In a non-MapReduce indexer, a significant

Distributed Indexing:

Figure from Lin & Dyer 2010.

4.3. INVERTED INDEXING: BASELINE IMPLEMENTATION 71

one fish, two fish
doc 1

red fish, blue fish
doc 2

one red bird
doc 3

mapper mapper mapper

d1 2fish

d1 1one

d1 1two

d2 1blue

d2 2fish

d2 1red

d3 1bird

d3 1one

d3 1red

reducer

d1 1two d2 1red d3 1red

Shuffle and Sort: aggregate values by keys

reducer reducerreducer

d1 2fish d2 2 d3 1bird

d1 1one

d1 1two

d2 1blue

d2 1red d3 1

d3 1

Figure 4.3: Simple illustration of the baseline inverted indexing algorithm in MapReduce with three
mappers and two reducers. Postings are shown as pairs of boxes (docid, tf).

the number of reducers. There is no need to further consolidate these files. Separately, we must also
build an index to the postings lists themselves for the retrieval engine: this is typically in the form
of mappings from term to (file, byte offset) pairs, so that given a term, the retrieval engine can fetch
its postings list by opening the appropriate file and seeking to the correct byte offset position in that
file.

Execution of the complete algorithm is illustrated in Figure 4.3 with a toy example consisting of
three documents, three mappers, and two reducers. Intermediate key-value pairs (from the mappers)
and the final key-value pairs comprising the inverted index (from the reducers) are shown in the
boxes with dotted lines. Postings are shown as pairs of boxes, with the document id on the left and
the term frequency on the right.

The MapReduce programming model provides a very concise expression of the inverted
indexing algorithm. Its implementation is similarly concise: the basic algorithm can be implemented
in as few as a couple dozen lines of code in Hadoop (with minimal document processing). Such an
implementation can be completed as a week-long programming assignment in a course for advanced
undergraduates or first-year graduate students [83; 93]. In a non-MapReduce indexer, a significant

Distributed Indexing:

Figure from Lin & Dyer 2010.

4.3. INVERTED INDEXING: BASELINE IMPLEMENTATION 71

one fish, two fish
doc 1

red fish, blue fish
doc 2

one red bird
doc 3

mapper mapper mapper

d1 2fish

d1 1one

d1 1two

d2 1blue

d2 2fish

d2 1red

d3 1bird

d3 1one

d3 1red

reducer

d1 1two d2 1red d3 1red

Shuffle and Sort: aggregate values by keys

reducer reducerreducer

d1 2fish d2 2 d3 1bird

d1 1one

d1 1two

d2 1blue

d2 1red d3 1

d3 1

Figure 4.3: Simple illustration of the baseline inverted indexing algorithm in MapReduce with three
mappers and two reducers. Postings are shown as pairs of boxes (docid, tf).

the number of reducers. There is no need to further consolidate these files. Separately, we must also
build an index to the postings lists themselves for the retrieval engine: this is typically in the form
of mappings from term to (file, byte offset) pairs, so that given a term, the retrieval engine can fetch
its postings list by opening the appropriate file and seeking to the correct byte offset position in that
file.

Execution of the complete algorithm is illustrated in Figure 4.3 with a toy example consisting of
three documents, three mappers, and two reducers. Intermediate key-value pairs (from the mappers)
and the final key-value pairs comprising the inverted index (from the reducers) are shown in the
boxes with dotted lines. Postings are shown as pairs of boxes, with the document id on the left and
the term frequency on the right.

The MapReduce programming model provides a very concise expression of the inverted
indexing algorithm. Its implementation is similarly concise: the basic algorithm can be implemented
in as few as a couple dozen lines of code in Hadoop (with minimal document processing). Such an
implementation can be completed as a week-long programming assignment in a course for advanced
undergraduates or first-year graduate students [83; 93]. In a non-MapReduce indexer, a significant

Distributed Indexing:

Figure from Lin & Dyer 2010.

4.4. INVERTED INDEXING: REVISED IMPLEMENTATION 73

1: class Mapper
2: method Map(docid n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t} ← H {t} + 1

6: for all term t ∈ H do
7: Emit(tuple ⟨t, n⟩, tf H {t})
1: class Reducer
2: method Initialize
3: tprev ← ∅
4: P ← new PostingsList
5: method Reduce(tuple ⟨t, n⟩, tf [f])
6: if t ̸= tprev ∧ tprev ̸= ∅ then
7: Emit(term t, postings P)

8: P.Reset()

9: P.Add(⟨n, f ⟩)
10: tprev ← t

11: method Close
12: Emit(term t, postings P)

Figure 4.4: Pseudo-code of a scalable inverted indexing algorithm in MapReduce. By applying the
value-to-key conversion design pattern, the execution framework is exploited to sort postings so that they
arrive sorted by document id in the reducer.

algorithm, payloads can be easily changed: by simply replacing the intermediate value f (term
frequency) with whatever else is desired (e.g., term positional information).

There is one more detail we must address when building inverted indexes. Since almost all
retrieval models take into account document length when computing query–document scores, this
information must also be extracted. Although it is straightforward to express this computation as
another MapReduce job, this task can actually be folded into the inverted indexing process. When
processing the terms in each document, the document length is known, and can be written out as
“side data” directly to HDFS. We can take advantage of the ability for a mapper to hold state across
the processing of multiple documents in the following manner: an in-memory associative array
is created to store document lengths, which is populated as each document is processed.8 When
the mapper finishes processing input records, document lengths are written out to HDFS (i.e., in
the Close method). This approach is essentially a variant of the in-mapper combining pattern.
Document length data end up in m different files, where m is the number of mappers; these files are

8In general, there is no worry about insufficient memory to hold these data.

What happens when new data needs to be
added to an index?

1. Maintain an “auxiliary index” containing the new
data, query both, and merge periodically;

2. Build a second full index periodically and “switch
over” when it’s done.

Option 1 is attractive but complex; option 2 is less
flexible and expensive but is simpler.

How to represent auxiliary index?

The easiest way is as a large collection of posting files-
then, merging is just a simple append operation.

However, most file systems don’t appreciate having
millions of files (also disk seek time, etc.).

So, the tradeoff is: for merge speed, we want as small an
auxiliary index as possible...

... but large enough to not run into storage-related
complications; also, we want to minimize merges.

Also, the naïve approach results in overall O(T2) index
construction time (because each posting list has to be
merged in each merge).

Can we do better?

Solution: Logarithmic merging.

!  Maintain&a&series&of&indexes,&each&twice&as&large&as&
the&previous&one&
!  At&any&9me,&some&of&these&powers&of&2&are&instan9ated&

!  Keep&smallest&(Z0)&in&memory&
!  Larger&ones&(I0,&I1,&…)&on&disk&
!  If&Z0&gets&too&big&(>&n),&write&to&disk&as&I0&
!  or&merge&with&I0&(if&I0&already&exists)&as&Z1&
!  Either&write&merge&Z1&to&disk&as&I1&(if&no&I1)&
!  Or&merge&with&I1&to&form&Z2&

Taken from Manning, et al.’s slides on the subject.

Solution: Logarithmic merging.

Index construction is now O(TlogT) on average, since
each posting is only merged logT times...

But query performance just went down: we have to
merge log T indices to deliver results.

Also, it is now much harder to maintain collection-wide
statistics (needed for spelling suggestion, result ranking,
etc.).

Index Construction & Compression: Agenda

• Practical considerations

• Building indices

• Static indexing approaches

• Dynamic indexing

• Storing indices

• Dictionary compression

• Posting list compression

Why compress?

The obvious answer: to save disk space.

A less obvious answer: to keep more data in the
computer’s cache.

Online edition (c) 2009 Cambridge UP

68 4 Index construction

! Table 4.1 Typical system parameters in 2007. The seek time is the time needed
to position the disk head in a new position. The transfer time per byte is the rate of
transfer from disk to memory when the head is in the right position.

Symbol Statistic Value
s average seek time 5 ms = 5 × 10−3 s
b transfer time per byte 0.02 µs = 2 × 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation
(e.g., compare & swap a word) 0.01 µs = 10−8 s

size of main memory several GB
size of disk space 1 TB or more

4.1 Hardware basics

When building an information retrieval (IR) system, many decisions are based
on the characteristics of the computer hardware on which the system runs.
We therefore begin this chapter with a brief review of computer hardware.
Performance characteristics typical of systems in 2007 are shown in Table 4.1.
A list of hardware basics that we need in this book to motivate IR system
design follows.

• Access to data in memory is much faster than access to data on disk. It
takes a few clock cycles (perhaps 5 × 10−9 seconds) to access a byte in
memory, but much longer to transfer it from disk (about 2 × 10−8 sec-
onds). Consequently, we want to keep as much data as possible in mem-
ory, especially those data that we need to access frequently. We call the
technique of keeping frequently used disk data in main memory caching.CACHING

• When doing a disk read or write, it takes a while for the disk head to
move to the part of the disk where the data are located. This time is called
the seek time and it averages 5 ms for typical disks. No data are beingSEEK TIME

transferred during the seek. To maximize data transfer rates, chunks of
data that will be read together should therefore be stored contiguously on
disk. For example, using the numbers in Table 4.1 it may take as little as
0.2 seconds to transfer 10 megabytes (MB) from disk to memory if it is
stored as one chunk, but up to 0.2 + 100 × (5 × 10−3) = 0.7 seconds if it
is stored in 100 noncontiguous chunks because we need to move the disk
head up to 100 times.

• Operating systems generally read and write entire blocks. Thus, reading
a single byte from disk can take as much time as reading the entire block.

We can decompress data much faster than the disk can
get it to us!

There are two ways to compress an index:

Online edition (c) 2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Dictionary Postings lists

There are two ways to compress an index:

Online edition (c) 2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Dictionary Postings lists

Online edition (c) 2009 Cambridge UP

5.1 Statistical properties of terms in information retrieval 87

! Table 5.1 The effect of preprocessing on the number of terms, nonpositional post-
ings, and tokens for Reuters-RCV1. “∆%” indicates the reduction in size from the pre-
vious line, except that “30 stop words” and “150 stop words” both use “case folding”
as their reference line. “T%” is the cumulative (“total”) reduction from unfiltered. We
performed stemming with the Porter stemmer (Chapter 2, page 33).

tokens (= number of position
(distinct) terms nonpositional postings entries in postings)

number ∆% T% number ∆% T% number ∆% T%
unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 −2 −2 100,680,242 −8 −8 179,158,204 −9 −9
case folding 391,523 −17 −19 96,969,056 −3 −12 179,158,204 −0 −9
30 stop words 391,493 −0 −19 83,390,443 −14 −24 121,857,825 −31 −38
150 stop words 391,373 −0 −19 67,001,847 −30 −39 94,516,599 −47 −52
stemming 322,383 −17 −33 63,812,300 −4 −42 94,516,599 −0 −52

however, that the percentage reductions can be very different for some text
collections. For example, for a collection of web pages with a high proportion
of French text, a lemmatizer for French reduces vocabulary size much more
than the Porter stemmer does for an English-only collection because French
is a morphologically richer language than English.

The compression techniques we describe in the remainder of this chapter
are lossless, that is, all information is preserved. Better compression ratiosLOSSLESS

can be achieved with lossy compression, which discards some information.LOSSY COMPRESSION

Case folding, stemming, and stop word elimination are forms of lossy com-
pression. Similarly, the vector space model (Chapter 6) and dimensionality
reduction techniques like latent semantic indexing (Chapter 18) create com-
pact representations from which we cannot fully restore the original collec-
tion. Lossy compression makes sense when the “lost” information is unlikely
ever to be used by the search system. For example, web search is character-
ized by a large number of documents, short queries, and users who only look
at the first few pages of results. As a consequence, we can discard postings of
documents that would only be used for hits far down the list. Thus, there are
retrieval scenarios where lossy methods can be used for compression without
any reduction in effectiveness.

Before introducing techniques for compressing the dictionary, we want to
estimate the number of distinct terms M in a collection. It is sometimes said
that languages have a vocabulary of a certain size. The second edition of
the Oxford English Dictionary (OED) defines more than 600,000 words. But
the vocabulary of most large collections is much larger than the OED. The
OED does not include most names of people, locations, products, or scientific

Pre-processing is one approach to dictionary
compression:

Fewer dictionary terms == smaller dictionary, fewer
posting lists, etc.

Note that this is language-dependent!

Online edition (c) 2009 Cambridge UP

5.1 Statistical properties of terms in information retrieval 87

! Table 5.1 The effect of preprocessing on the number of terms, nonpositional post-
ings, and tokens for Reuters-RCV1. “∆%” indicates the reduction in size from the pre-
vious line, except that “30 stop words” and “150 stop words” both use “case folding”
as their reference line. “T%” is the cumulative (“total”) reduction from unfiltered. We
performed stemming with the Porter stemmer (Chapter 2, page 33).

tokens (= number of position
(distinct) terms nonpositional postings entries in postings)

number ∆% T% number ∆% T% number ∆% T%
unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 −2 −2 100,680,242 −8 −8 179,158,204 −9 −9
case folding 391,523 −17 −19 96,969,056 −3 −12 179,158,204 −0 −9
30 stop words 391,493 −0 −19 83,390,443 −14 −24 121,857,825 −31 −38
150 stop words 391,373 −0 −19 67,001,847 −30 −39 94,516,599 −47 −52
stemming 322,383 −17 −33 63,812,300 −4 −42 94,516,599 −0 −52

however, that the percentage reductions can be very different for some text
collections. For example, for a collection of web pages with a high proportion
of French text, a lemmatizer for French reduces vocabulary size much more
than the Porter stemmer does for an English-only collection because French
is a morphologically richer language than English.

The compression techniques we describe in the remainder of this chapter
are lossless, that is, all information is preserved. Better compression ratiosLOSSLESS

can be achieved with lossy compression, which discards some information.LOSSY COMPRESSION

Case folding, stemming, and stop word elimination are forms of lossy com-
pression. Similarly, the vector space model (Chapter 6) and dimensionality
reduction techniques like latent semantic indexing (Chapter 18) create com-
pact representations from which we cannot fully restore the original collec-
tion. Lossy compression makes sense when the “lost” information is unlikely
ever to be used by the search system. For example, web search is character-
ized by a large number of documents, short queries, and users who only look
at the first few pages of results. As a consequence, we can discard postings of
documents that would only be used for hits far down the list. Thus, there are
retrieval scenarios where lossy methods can be used for compression without
any reduction in effectiveness.

Before introducing techniques for compressing the dictionary, we want to
estimate the number of distinct terms M in a collection. It is sometimes said
that languages have a vocabulary of a certain size. The second edition of
the Oxford English Dictionary (OED) defines more than 600,000 words. But
the vocabulary of most large collections is much larger than the OED. The
OED does not include most names of people, locations, products, or scientific

How to estimate the number of terms in a
collection?

Counting the number of distinct
words in, say, the OED is a
tempting way to start...

... but often results in dramatically
under-estimated counts.

(Think names of places, products,
genes/proteins, etc.)

How to estimate the number of terms in a
collection?

Online edition (c) 2009 Cambridge UP

88 5 Index compression

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g

1
0

 M

! Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T
(number of tokens) for Reuters-RCV1. For these data, the dashed line log10 M =
0.49 ∗ log10 T + 1.64 is the best least-squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

entities like genes. These names need to be included in the inverted index,
so our users can search for them.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-HEAPS’ LAW

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the
parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for
Heaps’ law is that the simplest possible relationship between collection size
and vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law

Heaps’ law curve for vocab size M in collection of size T
tokens.

M = kT b

How to estimate the number of terms in a
collection?

Online edition (c) 2009 Cambridge UP

88 5 Index compression

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g

1
0

 M

! Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T
(number of tokens) for Reuters-RCV1. For these data, the dashed line log10 M =
0.49 ∗ log10 T + 1.64 is the best least-squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

entities like genes. These names need to be included in the inverted index,
so our users can search for them.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-HEAPS’ LAW

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the
parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for
Heaps’ law is that the simplest possible relationship between collection size
and vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law

Implication: M increases continually (i.e., doesn’t plateau
once the collection gets to a certain size).

M = kT b

https://en.wikipedia.org/wiki/Heaps'_law

https://en.wikipedia.org/wiki/Heaps'_law
https://en.wikipedia.org/wiki/Heaps'_law

What about term distribution within collection?

cfi /
1

i
Zipf’s law: collection frequency of
a term decreases rapidly with rank.

Online edition (c) 2009 Cambridge UP

90 5 Index compression

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

log10 rank

7

lo
g
1
0
 c

f

! Figure 5.2 Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of
frequency rank for the terms in the collection. The line is the distribution predicted
by Zipf’s law (weighted least-squares fit; intercept is 6.95).

? Exercise 5.1 [⋆]

Assuming one machine word per posting, what is the size of the uncompressed (non-
positional) index for different tokenizations based on Table 5.1? How do these num-
bers compare with Table 5.6?

5.2 Dictionary compression

This section presents a series of dictionary data structures that achieve in-
creasingly higher compression ratios. The dictionary is small compared with
the postings file as suggested by Table 5.1. So why compress it if it is respon-
sible for only a small percentage of the overall space requirements of the IR
system?

One of the primary factors in determining the response time of an IR sys-
tem is the number of disk seeks necessary to process a query. If parts of the
dictionary are on disk, then many more disk seeks are necessary in query
evaluation. Thus, the main goal of compressing the dictionary is to fit it in
main memory, or at least a large portion of it, to support high query through-

What about term distribution within collection?

Online edition (c) 2009 Cambridge UP

90 5 Index compression

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

log10 rank

7

lo
g
1
0
 c

f

! Figure 5.2 Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of
frequency rank for the terms in the collection. The line is the distribution predicted
by Zipf’s law (weighted least-squares fit; intercept is 6.95).

? Exercise 5.1 [⋆]

Assuming one machine word per posting, what is the size of the uncompressed (non-
positional) index for different tokenizations based on Table 5.1? How do these num-
bers compare with Table 5.6?

5.2 Dictionary compression

This section presents a series of dictionary data structures that achieve in-
creasingly higher compression ratios. The dictionary is small compared with
the postings file as suggested by Table 5.1. So why compress it if it is respon-
sible for only a small percentage of the overall space requirements of the IR
system?

One of the primary factors in determining the response time of an IR sys-
tem is the number of disk seeks necessary to process a query. If parts of the
dictionary are on disk, then many more disk seeks are necessary in query
evaluation. Thus, the main goal of compressing the dictionary is to fit it in
main memory, or at least a large portion of it, to support high query through-

Implication: A small number of terms are very common;
most are rare.

The point of dictionary compression:

Fit as much of the dictionary as possible in
main memory.

Because of Heap’s law, large collections will
have large dictionaries...

... and many search engines are
multilingual!

Warning: here there be pointers...

Warning: here there be caveats...

#1: For the rest of today, we shall
pretend that all text is ASCII.

Warning: here there be caveats...

Also: the book uses a 32-bit address
space. Large collections need more.

The simplest possible dictionary structure:

Online edition (c) 2009 Cambridge UP

5.2 Dictionary compression 91

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
.
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

! Figure 5.3 Storing the dictionary as an array of fixed-width entries.

put. Although dictionaries of very large collections fit into the memory of a
standard desktop machine, this is not true of many other application scenar-
ios. For example, an enterprise search server for a large corporation may
have to index a multiterabyte collection with a comparatively large vocab-
ulary because of the presence of documents in many different languages.
We also want to be able to design search systems for limited hardware such
as mobile phones and onboard computers. Other reasons for wanting to
conserve memory are fast startup time and having to share resources with
other applications. The search system on your PC must get along with the
memory-hogging word processing suite you are using at the same time.

5.2.1 Dictionary as a string

The simplest data structure for the dictionary is to sort the vocabulary lex-
icographically and store it in an array of fixed-width entries as shown in
Figure 5.3. We allocate 20 bytes for the term itself (because few terms have
more than twenty characters in English), 4 bytes for its document frequency,
and 4 bytes for the pointer to its postings list. Four-byte pointers resolve a
4 gigabytes (GB) address space. For large collections like the web, we need
to allocate more bytes per pointer. We look up terms in the array by binary
search. For Reuters-RCV1, we need M × (20 + 4 + 4) = 400,000 × 28 =
11.2megabytes (MB) for storing the dictionary in this scheme.

Using fixed-width entries for terms is clearly wasteful. The average length
of a term in English is about eight characters (Table 4.2, page 70), so on av-
erage we are wasting twelve characters in the fixed-width scheme. Also,
we have no way of storing terms with more than twenty characters like
hydrochlorofluorocarbons and supercalifragilisticexpialidocious. We can overcome
these shortcomings by storing the dictionary terms as one long string of char-
acters, as shown in Figure 5.4. The pointer to the next term is also used to
demarcate the end of the current term. As before, we locate terms in the data
structure by way of binary search in the (now smaller) table. This scheme
saves us 60% compared to fixed-width storage – 12 bytes on average of the

In RCV1*, 11.2 MB needed to store
400,000 dictionary entries.

RCV1: “Reuters Corpus Volume 1,” a newswire corpus.

The simplest possible dictionary structure:

Online edition (c) 2009 Cambridge UP

5.2 Dictionary compression 91

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
.
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

! Figure 5.3 Storing the dictionary as an array of fixed-width entries.

put. Although dictionaries of very large collections fit into the memory of a
standard desktop machine, this is not true of many other application scenar-
ios. For example, an enterprise search server for a large corporation may
have to index a multiterabyte collection with a comparatively large vocab-
ulary because of the presence of documents in many different languages.
We also want to be able to design search systems for limited hardware such
as mobile phones and onboard computers. Other reasons for wanting to
conserve memory are fast startup time and having to share resources with
other applications. The search system on your PC must get along with the
memory-hogging word processing suite you are using at the same time.

5.2.1 Dictionary as a string

The simplest data structure for the dictionary is to sort the vocabulary lex-
icographically and store it in an array of fixed-width entries as shown in
Figure 5.3. We allocate 20 bytes for the term itself (because few terms have
more than twenty characters in English), 4 bytes for its document frequency,
and 4 bytes for the pointer to its postings list. Four-byte pointers resolve a
4 gigabytes (GB) address space. For large collections like the web, we need
to allocate more bytes per pointer. We look up terms in the array by binary
search. For Reuters-RCV1, we need M × (20 + 4 + 4) = 400,000 × 28 =
11.2megabytes (MB) for storing the dictionary in this scheme.

Using fixed-width entries for terms is clearly wasteful. The average length
of a term in English is about eight characters (Table 4.2, page 70), so on av-
erage we are wasting twelve characters in the fixed-width scheme. Also,
we have no way of storing terms with more than twenty characters like
hydrochlorofluorocarbons and supercalifragilisticexpialidocious. We can overcome
these shortcomings by storing the dictionary terms as one long string of char-
acters, as shown in Figure 5.4. The pointer to the next term is also used to
demarcate the end of the current term. As before, we locate terms in the data
structure by way of binary search in the (now smaller) table. This scheme
saves us 60% compared to fixed-width storage – 12 bytes on average of the

Fixed-width entries are both wasteful and
limiting, but are simple to implement.

Next: dictionary-as-a-string

Online edition (c) 2009 Cambridge UP

92 5 Index compression

. . . s y s t i l e s y z y g e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i n s z o n o . . .

freq.

9

92

5

71

12

. . .

4 bytes

postings ptr.

. . .

4 bytes

term ptr.

3 bytes

. . .

→

→

→

→

→

! Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding
term and the beginning of the next. For example, the first three terms in this example
are systile, syzygetic, and syzygial.

20 bytes we allocated for terms before. However, we now also need to store
term pointers. The term pointers resolve 400,000 × 8 = 3.2 × 106 positions,
so they need to be log2 3.2 × 106 ≈ 22 bits or 3 bytes long.

In this new scheme, we need 400,000 × (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2 to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (Figure 5.5). We store the length of the term in the string as an ad-
ditional byte at the beginning of the term. We thus eliminate k − 1 term
pointers, but need an additional k bytes for storing the length of each term.
For k = 4, we save (k − 1) × 3 = 9 bytes for term pointers, but need an ad-
ditional k = 4 bytes for term lengths. So the total space requirements for the
dictionary of Reuters-RCV1 are reduced by 5 bytes per four-term block, or a
total of 400,000 × 1/4 × 5 = 0.5 MB, bringing us down to 7.1 MB.

In RCV1, 7.6 MB needed to store 400,000
dictionary entries.

Next: dictionary-as-a-string

Online edition (c) 2009 Cambridge UP

92 5 Index compression

. . . s y s t i l e s y z y g e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i n s z o n o . . .

freq.

9

92

5

71

12

. . .

4 bytes

postings ptr.

. . .

4 bytes

term ptr.

3 bytes

. . .

→

→

→

→

→

! Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding
term and the beginning of the next. For example, the first three terms in this example
are systile, syzygetic, and syzygial.

20 bytes we allocated for terms before. However, we now also need to store
term pointers. The term pointers resolve 400,000 × 8 = 3.2 × 106 positions,
so they need to be log2 3.2 × 106 ≈ 22 bits or 3 bytes long.

In this new scheme, we need 400,000 × (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2 to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (Figure 5.5). We store the length of the term in the string as an ad-
ditional byte at the beginning of the term. We thus eliminate k − 1 term
pointers, but need an additional k bytes for storing the length of each term.
For k = 4, we save (k − 1) × 3 = 9 bytes for term pointers, but need an ad-
ditional k = 4 bytes for term lengths. So the total space requirements for the
dictionary of Reuters-RCV1 are reduced by 5 bytes per four-term block, or a
total of 400,000 × 1/4 × 5 = 0.5 MB, bringing us down to 7.1 MB.

Some of the space saved by the variable
width is offset by the need for term pointers.

Blocked storage:

Online edition (c) 2009 Cambridge UP

5.2 Dictionary compression 93

. . . 7 s y s t i l e 9 s y z y g e t i c 8 s y z y g i a l 6 s y z y g y11s z a i b e l y i t e 6 s z e c i n . . .

freq.

9

92

5

71

12

. . .

postings ptr.

. . .

term ptr.

. . .

→

→

→

→

→

! Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths of seven, nine, eight, and six charac-
ters, respectively. Each term is preceded by a byte encoding its length that indicates
how many bytes to skip to reach subsequent terms.

By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as dou-
ble lines and steps in list search as simple lines. We search for terms in the un-
compressed dictionary by binary search (a). In the compressed dictionary, we
first locate the term’s block by binary search and then its position within the
list by linear search through the block (b). Searching the uncompressed dic-
tionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps,
assuming each term is equally likely to come up in a query. For example,
finding the two terms, aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, ≈ 25% more. For example, finding den takes one binary
search step and two steps through the block. By increasing k, we can get
the size of the compressed dictionary arbitrarily close to the minimum of
400,000 × (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes prohibitively
slow for large values of k.

One source of redundancy in the dictionary we have not exploited yet is
the fact that consecutive entries in an alphabetically sorted list share common
prefixes. This observation leads to front coding (Figure 5.7). A common prefixFRONT CODING

Pick blocks of size k, and only store pointer
to first term of each block. Add in-band term
lengths to dictionary string.

Blocked storage:

Online edition (c) 2009 Cambridge UP

5.2 Dictionary compression 93

. . . 7 s y s t i l e 9 s y z y g e t i c 8 s y z y g i a l 6 s y z y g y11s z a i b e l y i t e 6 s z e c i n . . .

freq.

9

92

5

71

12

. . .

postings ptr.

. . .

term ptr.

. . .

→

→

→

→

→

! Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths of seven, nine, eight, and six charac-
ters, respectively. Each term is preceded by a byte encoding its length that indicates
how many bytes to skip to reach subsequent terms.

By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as dou-
ble lines and steps in list search as simple lines. We search for terms in the un-
compressed dictionary by binary search (a). In the compressed dictionary, we
first locate the term’s block by binary search and then its position within the
list by linear search through the block (b). Searching the uncompressed dic-
tionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps,
assuming each term is equally likely to come up in a query. For example,
finding the two terms, aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, ≈ 25% more. For example, finding den takes one binary
search step and two steps through the block. By increasing k, we can get
the size of the compressed dictionary arbitrarily close to the minimum of
400,000 × (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes prohibitively
slow for large values of k.

One source of redundancy in the dictionary we have not exploited yet is
the fact that consecutive entries in an alphabetically sorted list share common
prefixes. This observation leads to front coding (Figure 5.7). A common prefixFRONT CODING

This saves k - 1 term pointers, but adds k
bytes for term lengths.

Blocked storage:

Online edition (c) 2009 Cambridge UP

5.2 Dictionary compression 93

. . . 7 s y s t i l e 9 s y z y g e t i c 8 s y z y g i a l 6 s y z y g y11s z a i b e l y i t e 6 s z e c i n . . .

freq.

9

92

5

71

12

. . .

postings ptr.

. . .

term ptr.

. . .

→

→

→

→

→

! Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths of seven, nine, eight, and six charac-
ters, respectively. Each term is preceded by a byte encoding its length that indicates
how many bytes to skip to reach subsequent terms.

By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as dou-
ble lines and steps in list search as simple lines. We search for terms in the un-
compressed dictionary by binary search (a). In the compressed dictionary, we
first locate the term’s block by binary search and then its position within the
list by linear search through the block (b). Searching the uncompressed dic-
tionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps,
assuming each term is equally likely to come up in a query. For example,
finding the two terms, aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, ≈ 25% more. For example, finding den takes one binary
search step and two steps through the block. By increasing k, we can get
the size of the compressed dictionary arbitrarily close to the minimum of
400,000 × (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes prohibitively
slow for large values of k.

One source of redundancy in the dictionary we have not exploited yet is
the fact that consecutive entries in an alphabetically sorted list share common
prefixes. This observation leads to front coding (Figure 5.7). A common prefixFRONT CODING

For RCV1, we are now down to 7.1
megabytes.

But there is always a tradeoff: Term lookup
now takes more time.

Online edition (c) 2009 Cambridge UP

94 5 Index compression

(a) aid

box

den

ex

job

ox

pit

win

(b) aid box den ex

job ox pit win

! Figure 5.6 Search of the uncompressed dictionary (a) and a dictionary com-
pressed by blocking with k = 4 (b).

One block in blocked compression (k = 4) . . .
8automata8automate9au tomatic10automation

⇓

. . . further compressed with front coding.
8automat∗a1⋄e2 ⋄ ic3⋄ i on

! Figure 5.7 Front coding. A sequence of terms with identical prefix (“automat”) is
encoded by marking the end of the prefix with ∗ and replacing it with ⋄ in subsequent
terms. As before, the first byte of each entry encodes the number of characters.

Seeking through the
uncompressed
dictionary involves
on average 25%
fewer steps.

Front coding takes advantage of common
prefixes to save space.

Online edition (c) 2009 Cambridge UP

94 5 Index compression

(a) aid

box

den

ex

job

ox

pit

win

(b) aid box den ex

job ox pit win

! Figure 5.6 Search of the uncompressed dictionary (a) and a dictionary com-
pressed by blocking with k = 4 (b).

One block in blocked compression (k = 4) . . .
8automata8automate9au tomatic10automation

⇓

. . . further compressed with front coding.
8automat∗a1⋄e2 ⋄ ic3⋄ i on

! Figure 5.7 Front coding. A sequence of terms with identical prefix (“automat”) is
encoded by marking the end of the prefix with ∗ and replacing it with ⋄ in subsequent
terms. As before, the first byte of each entry encodes the number of characters.

Online edition (c) 2009 Cambridge UP

5.3 Postings file compression 95

! Table 5.2 Dictionary compression for Reuters-RCV1.
data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9

is identified for a subsequence of the term list and then referred to with a
special character. In the case of Reuters, front coding saves another 1.2 MB,
as we found in an experiment.

Other schemes with even greater compression rely on minimal perfect
hashing, that is, a hash function that maps M terms onto [1, . . . , M] without
collisions. However, we cannot adapt perfect hashes incrementally because
each new term causes a collision and therefore requires the creation of a new
perfect hash function. Therefore, they cannot be used in a dynamic environ-
ment.

Even with the best compression scheme, it may not be feasible to store
the entire dictionary in main memory for very large text collections and for
hardware with limited memory. If we have to partition the dictionary onto
pages that are stored on disk, then we can index the first term of each page
using a B-tree. For processing most queries, the search system has to go to
disk anyway to fetch the postings. One additional seek for retrieving the
term’s dictionary page from disk is a significant, but tolerable increase in the
time it takes to process a query.

Table 5.2 summarizes the compression achieved by the four dictionary
data structures.

? Exercise 5.2

Estimate the space usage of the Reuters-RCV1 dictionary with blocks of size k = 8
and k = 16 in blocked dictionary storage.

Exercise 5.3

Estimate the time needed for term lookup in the compressed dictionary of Reuters-
RCV1 with block sizes of k = 4 (Figure 5.6, b), k = 8, and k = 16. What is the
slowdown compared with k = 1 (Figure 5.6, a)?

5.3 Postings file compression

Recall from Table 4.2 (page 70) that Reuters-RCV1 has 800,000 documents,
200 tokens per document, six characters per token, and 100,000,000 post-
ings where we define a posting in this chapter as a docID in a postings
list, that is, excluding frequency and position information. These numbers

There are two ways to compress an index:

Online edition (c) 2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Dictionary Postings lists

Simplest approach to posting list:

Store lists of complete docIDs.

RCV1 has 800,000 documents, so we
need bits per docID.log2 800, 000 = 20

Approximately 250 MB uncompressed.

800,000 is tiny; bigger collections need more
bits per docID (many more).

Key observation: postings for frequent terms
are often close together in the collection.

What if we store gaps or offsets
between docIDs rather than docIDs
themselves?

Online edition (c) 2009 Cambridge UP

96 5 Index compression

! Table 5.3 Encoding gaps instead of document IDs. For example, we store gaps
107, 5, 43, . . . , instead of docIDs 283154, 283159, 283202, . . . for computer. The first
docID is left unchanged (only shown for arachnocentric).

encoding postings list
the docIDs . . . 283042 283043 283044 283045

gaps 1 1 1
computer docIDs . . . 283047 283154 283159 283202

gaps 107 5 43
arachnocentric docIDs 252000 500100

gaps 252000 248100

correspond to line 3 (“case folding”) in Table 5.1. Document identifiers are
log2 800,000 ≈ 20 bits long. Thus, the size of the collection is about 800,000×
200 × 6 bytes = 960 MB and the size of the uncompressed postings file is
100,000,000 × 20/8 = 250 MB.

To devise a more efficient representation of the postings file, one that uses
fewer than 20 bits per document, we observe that the postings for frequent
terms are close together. Imagine going through the documents of a collec-
tion one by one and looking for a frequent term like computer. We will find
a document containing computer, then we skip a few documents that do not
contain it, then there is again a document with the term and so on (see Ta-
ble 5.3). The key idea is that the gaps between postings are short, requiring a
lot less space than 20 bits to store. In fact, gaps for the most frequent terms
such as the and for are mostly equal to 1. But the gaps for a rare term that
occurs only once or twice in a collection (e.g., arachnocentric in Table 5.3) have
the same order of magnitude as the docIDs and need 20 bits. For an econom-
ical representation of this distribution of gaps, we need a variable encoding
method that uses fewer bits for short gaps.

To encode small numbers in less space than large numbers, we look at two
types of methods: bytewise compression and bitwise compression. As the
names suggest, these methods attempt to encode gaps with the minimum
number of bytes and bits, respectively.

5.3.1 Variable byte codes

Variable byte (VB) encoding uses an integral number of bytes to encode a gap.VARIABLE BYTE
ENCODING The last 7 bits of a byte are “payload” and encode part of the gap. The first

bit of the byte is a continuation bit.It is set to 1 for the last byte of the encodedCONTINUATION BIT

gap and to 0 otherwise. To decode a variable byte code, we read a sequence
of bytes with continuation bit 0 terminated by a byte with continuation bit 1.
We then extract and concatenate the 7-bit parts. Figure 5.8 gives pseudocode

Many words wouldn’t need a full 20
bits to be represented...

We can use a variable byte code to more
efficiently use space:

Online edition (c) 2009 Cambridge UP

5.3 Postings file compression 97

VBENCODENUMBER(n)
1 bytes ← ⟨⟩
2 while true
3 do PREPEND(bytes, n mod 128)
4 if n < 128
5 then BREAK
6 n ← n div 128
7 bytes[LENGTH(bytes)] += 128
8 return bytes

VBENCODE(numbers)
1 bytestream ← ⟨⟩
2 for each n ∈ numbers
3 do bytes ← VBENCODENUMBER(n)
4 bytestream ← EXTEND(bytestream, bytes)
5 return bytestream

VBDECODE(bytestream)
1 numbers ← ⟨⟩
2 n ← 0
3 for i ← 1 to LENGTH(bytestream)
4 do if bytestream[i] < 128
5 then n ← 128× n + bytestream[i]
6 else n ← 128× n + (bytestream[i] − 128)
7 APPEND(numbers, n)
8 n ← 0
9 return numbers

! Figure 5.8 VB encoding and decoding. The functions div and mod compute
integer division and remainder after integer division, respectively. PREPEND adds an
element to the beginning of a list, for example, PREPEND(⟨1, 2⟩, 3) = ⟨3, 1, 2⟩. EXTEND
extends a list, for example, EXTEND(⟨1,2⟩, ⟨3, 4⟩) = ⟨1, 2, 3, 4⟩.

! Table 5.4 VB encoding. Gaps are encoded using an integral number of bytes.
The first bit, the continuation bit, of each byte indicates whether the code ends with
this byte (1) or not (0).
docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001

Figure 5.8 in the book gives an
example algorithm...

Using this scheme achieves >50% reduction in
posting list space (down to 116 MB).

In practice, these schemes can be applied to
different units than bytes (16-bit words, etc.).

Variable-byte encodings are simple and
work well... but can we do better?

Yes, by using bit-level encodings (like the γ
encoding).

But is it enough better to be worth the
significant hassle? Probably not.

Online edition (c) 2009 Cambridge UP

5.3 Postings file compression 103

! Table 5.6 Index and dictionary compression for Reuters-RCV1. The compression
ratio depends on the proportion of actual text in the collection. Reuters-RCV1 con-
tains a large amount of XML markup. Using the two best compression schemes, γ
encoding and blocking with front coding, the ratio compressed index to collection
size is therefore especially small for Reuters-RCV1: (101 + 5.9)/3600 ≈ 0.03.

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
term incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0

For Reuters-RCV1, M
Lc ≈ 400,000/15 ≈ 27,000 and

27,000

∑
j=1

2 × 106 × 15 log2 j

j
≈ 224 MB.(5.7)

So the postings file of the compressed inverted index for our 960 MB collec-
tion has a size of 224 MB, one fourth the size of the original collection.

When we run γ compression on Reuters-RCV1, the actual size of the com-
pressed index is even lower: 101 MB, a bit more than one tenth of the size of
the collection. The reason for the discrepancy between predicted and actual
value is that (i) Zipf’s law is not a very good approximation of the actual dis-
tribution of term frequencies for Reuters-RCV1 and (ii) gaps are not uniform.
The Zipf model predicts an index size of 251 MB for the unrounded numbers
from Table 4.2. If term frequencies are generated from the Zipf model and
a compressed index is created for these artificial terms, then the compressed
size is 254 MB. So to the extent that the assumptions about the distribution
of term frequencies are accurate, the predictions of the model are correct.

Table 5.6 summarizes the compression techniques covered in this chapter.
The term incidence matrix (Figure 1.1, page 4) for Reuters-RCV1 has size
400,000 × 800,000 = 40 × 8 × 109 bits or 40 GB.

γ codes achieve great compression ratios – about 15% better than vari-
able byte codes for Reuters-RCV1. But they are expensive to decode. This is
because many bit-level operations – shifts and masks – are necessary to de-
code a sequence of γ codes as the boundaries between codes will usually be

Next up: Experimental evaluation.

