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Simple Boolean model:

Inverted Index mapping terms to docs:
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Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Results obtained by intersecting/disjoining/etc. 
posting lists:
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Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

! Figure 1.5 Intersecting the postings lists for Brutus and Calpurnia from Figure 1.3.

b. Draw the inverted index representation for this collection, as in Figure 1.3 (page 7).

Exercise 1.3 [⋆]
For the document collection shown in Exercise 1.2, what are the returned results for
these queries:

a. schizophrenia AND drug
b. for AND NOT(drug OR approach)

1.3 Processing Boolean queries

How do we process a query using an inverted index and the basic Boolean
retrieval model? Consider processing the simple conjunctive query:SIMPLE CONJUNCTIVE

QUERIES

(1.1) Brutus AND Calpurnia

over the inverted index partially shown in Figure 1.3 (page 7). We:

1. Locate Brutus in the Dictionary

2. Retrieve its postings

3. Locate Calpurnia in the Dictionary

4. Retrieve its postings

5. Intersect the two postings lists, as shown in Figure 1.5.

The intersection operation is the crucial one: we need to efficiently intersectPOSTINGS LIST
INTERSECTION postings lists so as to be able to quickly find documents that contain both

terms. (This operation is sometimes referred to as merging postings lists:POSTINGS MERGE

this slightly counterintuitive name reflects using the term merge algorithm for
a general family of algorithms that combine multiple sorted lists by inter-
leaved advancing of pointers through each; here we are merging the lists
with a logical AND operation.)

There is a simple and effective method of intersecting postings lists using
the merge algorithm (see Figure 1.6): we maintain pointers into both lists

Query: Brutus AND Calpurnia



One big limitation: no obvious way to rank 
results.

Intuitive solution: an article that uses the query 
terms many times is probably “more relevant” than 
one that only uses them once...

... but not all query terms are equally informative.



Term Frequency (TF): How often does a term 
occur in the document?

Document Frequency (DF): In how many 
documents does the term occur?

Rare terms have high IDF, common terms have very low IDF.

Inverse Document Frequency (IDF): idft = log

N

dft



By combining these, we get a scoring that is:

1. Highest when t occurs frequently within a 
small group of documents...

2. Lower when term occurs less frequently 
within a document, or occurs in many 
documents...

3. Lowest when term is extremely common
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term dft idft

car 18,165 1.65
auto 6723 2.08
insurance 19,241 1.62
best 25,235 1.5

! Figure 6.8 Example of idf values. Here we give the idf’s of terms with various
frequencies in the Reuters collection of 806,791 documents.

The tf-idf weighting scheme assigns to term t a weight in document d givenTF-IDF

by

tf-idft,d = tft,d × idft.(6.8)

In other words, tf-idft,d assigns to term t a weight in document d that is

1. highest when t occurs many times within a small number of documents
(thus lending high discriminating power to those documents);

2. lower when the term occurs fewer times in a document, or occurs in many
documents (thus offering a less pronounced relevance signal);

3. lowest when the term occurs in virtually all documents.

At this point, we may view each document as a vector with one componentDOCUMENT VECTOR

corresponding to each term in the dictionary, together with a weight for each
component that is given by (6.8). For dictionary terms that do not occur in
a document, this weight is zero. This vector form will prove to be crucial to
scoring and ranking; we will develop these ideas in Section 6.3. As a first
step, we introduce the overlap score measure: the score of a document d is the
sum, over all query terms, of the number of times each of the query terms
occurs in d. We can refine this idea so that we add up not the number of
occurrences of each query term t in d, but instead the tf-idf weight of each
term in d.

Score(q, d) = ∑
t∈q

tf-idft,d.(6.9)

In Section 6.3 we will develop a more rigorous form of Equation (6.9).

? Exercise 6.8

Why is the idf of a term always finite?

Exercise 6.9

What is the idf of a term that occurs in every document? Compare this with the use
of stop word lists.

tf-idft,d = tft,d ⇥ idft



Extension to the simple model: zone scoring

We can define “fields” or “zones” containing 
different parts of the documents’ structure.



Extension to the simple model: zone scoring
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! Figure 6.1 Parametric search. In this example we have a collection with fields al-
lowing us to select publications by zones such as Author and fields such as Language.

william.author 2 3 5 8

william.title 2 4 8 16

william.abstract 11 121 1441 1729

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

! Figure 6.2 Basic zone index ; zones are encoded as extensions of dictionary en-
tries.

william 2.author,2.title 3.author 4.title 5.author✲ ✲ ✲ ✲

! Figure 6.3 Zone index in which the zone is encoded in the postings rather than
the dictionary.

Zones can be implemented in the main index 
as “virtual” terms...

... or as extensions to the dictionary data 
structures.
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Not all zones/fields are equally important:

Titles might be 
more important 
than descriptions.



Not all zones/fields are equally important:

Index terms 
might get high 
priority.



Weighted-zone scoring lets us represent this.

Basic idea: define z zones, each of 
which have a weight g. 

To score a document, then, we compute a 
linear sum of the weighted scores for each 
zone.

zX

i=1

gisi



Weighted-zone scoring lets us represent this.

Basic idea: define z zones, each of 
which have a weight g. 

To score a document, then, we compute a 
linear sum of the weighted scores for each 
zone.

    can be whatever we want: a Boolean flag 
indicating term presence/absence, etc.
si



Online edition (c) 2009 Cambridge UP

6.1 Parametric and zone indexes 113

ZONESCORE(q1, q2)
1 float scores[N] = [0]
2 constant g[ℓ]
3 p1 ← postings(q1)
4 p2 ← postings(q2)
5 // scores[] is an array with a score entry for each document, initialized to zero.
6 //p1 and p2 are initialized to point to the beginning of their respective postings.
7 //Assume g[] is initialized to the respective zone weights.
8 while p1 ̸= NIL and p2 ̸= NIL
9 do if docID(p1) = docID(p2)

10 then scores[docID(p1)] ← WEIGHTEDZONE(p1, p2, g)
11 p1 ← next(p1)
12 p2 ← next(p2)
13 else if docID(p1) < docID(p2)
14 then p1 ← next(p1)
15 else p2 ← next(p2)
16 return scores

! Figure 6.4 Algorithm for computing the weighted zone score from two postings
lists. Function WEIGHTEDZONE (not shown here) is assumed to compute the inner
loop of Equation 6.1.

a Boolean AND query, we now compute a score for each such document.
Some literature refers to the array scores[] above as a set of accumulators. TheACCUMULATOR

reason for this will be clear as we consider more complex Boolean functions
than the AND; thus we may assign a non-zero score to a document even if it
does not contain all query terms.

6.1.2 Learning weights

How do we determine the weights gi for weighted zone scoring? These
weights could be specified by an expert (or, in principle, the user); but in-
creasingly, these weights are “learned” using training examples that have
been judged editorially. This latter methodology falls under a general class
of approaches to scoring and ranking in information retrieval, known as
machine-learned relevance. We provide a brief introduction to this topic hereMACHINE-LEARNED

RELEVANCE because weighted zone scoring presents a clean setting for introducing it; a
complete development demands an understanding of machine learning and
is deferred to Chapter 15.

1. We are provided with a set of training examples, each of which is a tu-
ple consisting of a query q and a document d, together with a relevance

Similar to original intersection algorithm for 
a simple AND query...

... except we’re building up a list of scores 
rather than documents.



How to decide on zone weights?
zX

i=1

gisi

Experts or users can set them...

... or we can use machine learning to 
discover optimal weights.

Note: this requires expensive manual 
relevance judgment!



Non-Boolean models of retrieval: Agenda

• Review of Boolean model and TF/IDF

• Simple extensions thereof

• Vector model

• Language Models and IR

• Matrix decomposition methods



We can model a document as a vector:

Each component corresponds to a term in 
the index dictionary...

... and the magnitude of each component 
corresponds to some score (presence/
absence, tf, tf/idf, etc.).



This lets us represent our collection of 
documents in a common coordinate space...

... which in turn gives us a whole new 
toolbox for working with them.



How might we compare the “similarity” of 
two documents using this model?

One approach might measure the magnitude of the 
vector difference between the two docs.
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0 1
0

1

jealous

gossip

v⃗(q)

v⃗(d1)

v⃗(d2)

v⃗(d3)

θ

! Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations V⃗(d1) and V⃗(d2)COSINE SIMILARITY

sim(d1, d2) =
V⃗(d1) · V⃗(d2)

|V⃗(d1)||V⃗(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors V⃗(d1) and V⃗(d2), while the denominator is the product of
their Euclidean lengths. The dot product x⃗ · y⃗ of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let V⃗(d) denote the document vector for d, with M components

V⃗1(d) . . . V⃗M(d). The Euclidean length of d is defined to be
√

∑
M
i=1 V⃗2

i (d).
The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-

NORMALIZATION the vectors V⃗(d1) and V⃗(d2) to unit vectors v⃗(d1) = V⃗(d1)/|V⃗(d1)| and

Normalize for vector (document) length

This is also referred to as the cosine similarity between 
d1 and d2.
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Doc1 Doc2 Doc3
car 0.88 0.09 0.58
auto 0.10 0.71 0
insurance 0 0.71 0.70
best 0.46 0 0.41

! Figure 6.11 Euclidean normalized tf values for documents in Figure 6.9.

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

! Figure 6.12 Term frequencies in three novels. The novels are Austen’s Sense and
Sensibility, Pride and Prejudice and Brontë’s Wuthering Heights.

v⃗(d2) = V⃗(d2)/|V⃗(d2)|. We can then rewrite (6.10) as

sim(d1, d2) = v⃗(d1) · v⃗(d2).(6.11)

✎ Example 6.2: Consider the documents in Figure 6.9. We now apply Euclidean
normalization to the tf values from the table, for each of the three documents in the
table. The quantity

√
∑

M
i=1 V⃗2

i (d) has the values 30.56, 46.84 and 41.30 respectively
for Doc1, Doc2 and Doc3. The resulting Euclidean normalized tf values for these
documents are shown in Figure 6.11.

Thus, (6.11) can be viewed as the dot product of the normalized versions of
the two document vectors. This measure is the cosine of the angle θ between
the two vectors, shown in Figure 6.10. What use is the similarity measure
sim(d1, d2)? Given a document d (potentially one of the di in the collection),
consider searching for the documents in the collection most similar to d. Such
a search is useful in a system where a user may identify a document and
seek others like it – a feature available in the results lists of search engines
as a more like this feature. We reduce the problem of finding the document(s)
most similar to d to that of finding the di with the highest dot products (sim
values) v⃗(d) · v⃗(di). We could do this by computing the dot products between
v⃗(d) and each of v⃗(d1), . . . , v⃗(dN), then picking off the highest resulting sim
values.

✎ Example 6.3: Figure 6.12 shows the number of occurrences of three terms (affection,
jealous and gossip) in each of the following three novels: Jane Austen’s Sense and Sensi-
bility (SaS) and Pride and Prejudice (PaP) and Emily Brontë’s Wuthering Heights (WH).

Online edition (c) 2009 Cambridge UP

6.3 The vector space model for scoring 121

0 1
0

1

jealous

gossip

v⃗(q)

v⃗(d1)

v⃗(d2)

v⃗(d3)

θ

! Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations V⃗(d1) and V⃗(d2)COSINE SIMILARITY

sim(d1, d2) =
V⃗(d1) · V⃗(d2)

|V⃗(d1)||V⃗(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors V⃗(d1) and V⃗(d2), while the denominator is the product of
their Euclidean lengths. The dot product x⃗ · y⃗ of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let V⃗(d) denote the document vector for d, with M components

V⃗1(d) . . . V⃗M(d). The Euclidean length of d is defined to be
√

∑
M
i=1 V⃗2

i (d).
The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-

NORMALIZATION the vectors V⃗(d1) and V⃗(d2) to unit vectors v⃗(d1) = V⃗(d1)/|V⃗(d1)| and
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term SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0 0.254

! Figure 6.13 Term vectors for the three novels of Figure 6.12. These are based on
raw term frequency only and are normalized as if these were the only terms in the
collection. (Since affection and jealous occur in all three documents, their tf-idf weight
would be 0 in most formulations.)

Of course, there are many other terms occurring in each of these novels. In this ex-
ample we represent each of these novels as a unit vector in three dimensions, corre-
sponding to these three terms (only); we use raw term frequencies here, with no idf
multiplier. The resulting weights are as shown in Figure 6.13.

Now consider the cosine similarities between pairs of the resulting three-dimensional
vectors. A simple computation shows that sim(⃗v(SAS), v⃗(PAP)) is 0.999, whereas
sim(⃗v(SAS), v⃗(WH)) is 0.888; thus, the two books authored by Austen (SaS and PaP)
are considerably closer to each other than to Brontë’s Wuthering Heights. In fact, the
similarity between the first two is almost perfect (when restricted to the three terms
we consider). Here we have considered tf weights, but we could of course use other
term weight functions.

Viewing a collection of N documents as a collection of vectors leads to a
natural view of a collection as a term-document matrix: this is an M× N matrixTERM-DOCUMENT

MATRIX whose rows represent the M terms (dimensions) of the N columns, each of
which corresponds to a document. As always, the terms being indexed could
be stemmed before indexing; for instance, jealous and jealousy would under
stemming be considered as a single dimension. This matrix view will prove
to be useful in Chapter 18.

6.3.2 Queries as vectors

There is a far more compelling reason to represent documents as vectors:
we can also view a query as a vector. Consider the query q = jealous gossip.
This query turns into the unit vector v⃗(q) = (0, 0.707, 0.707) on the three
coordinates of Figures 6.12 and 6.13. The key idea now: to assign to each
document d a score equal to the dot product

v⃗(q) · v⃗(d).

In the example of Figure 6.13, Wuthering Heights is the top-scoring docu-
ment for this query with a score of 0.509, with Pride and Prejudice a distant
second with a score of 0.085, and Sense and Sensibility last with a score of
0.074. This simple example is somewhat misleading: the number of dimen-

Normalized to unit vector



How might we compare the “similarity” of 
two documents using this model?
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each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations V⃗(d1) and V⃗(d2)COSINE SIMILARITY

sim(d1, d2) =
V⃗(d1) · V⃗(d2)

|V⃗(d1)||V⃗(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors V⃗(d1) and V⃗(d2), while the denominator is the product of
their Euclidean lengths. The dot product x⃗ · y⃗ of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let V⃗(d) denote the document vector for d, with M components

V⃗1(d) . . . V⃗M(d). The Euclidean length of d is defined to be
√

∑
M
i=1 V⃗2

i (d).
The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-

NORMALIZATION the vectors V⃗(d1) and V⃗(d2) to unit vectors v⃗(d1) = V⃗(d1)/|V⃗(d1)| and

~v(d1) · ~v(d2) = cos(✓)



Now, finding the n most similar documents 
to a given document is simple:

Compute pairwise similarity scores, take the top n.
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document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.
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space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations V⃗(d1) and V⃗(d2)COSINE SIMILARITY
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V⃗(d1) · V⃗(d2)
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,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors V⃗(d1) and V⃗(d2), while the denominator is the product of
their Euclidean lengths. The dot product x⃗ · y⃗ of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let V⃗(d) denote the document vector for d, with M components

V⃗1(d) . . . V⃗M(d). The Euclidean length of d is defined to be
√

∑
M
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i (d).
The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-

NORMALIZATION the vectors V⃗(d1) and V⃗(d2) to unit vectors v⃗(d1) = V⃗(d1)/|V⃗(d1)| and



This vector model lends itself nicely to the 
construction of a term-document matrix.

t1 t2 t3 t4 ... tn

d1

d2

d3

d4

...

dm

m documents (rows), n terms (cols)



This lends itself nicely to the construction of 
a term-document matrix.

t1 t2 t3 t4 ... tn

d1

d2

d3

d4

...

dm

We’ll come back to this later...



Another nice thing about this model: queries 
as vectors.

Since we’re treating documents as “bags-of-words”, 
we can pretend that queries are just “short 
documents”...
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sions in practice will be far larger than three: it will equal the vocabulary size
M.

To summarize, by viewing a query as a “bag of words”, we are able to
treat it as a very short document. As a consequence, we can use the cosine
similarity between the query vector and a document vector as a measure of
the score of the document for that query. The resulting scores can then be
used to select the top-scoring documents for a query. Thus we have

score(q, d) =
V⃗(q) · V⃗(d)

|V⃗(q)||V⃗(d)|
.(6.12)

A document may have a high cosine score for a query even if it does not
contain all query terms. Note that the preceding discussion does not hinge
on any specific weighting of terms in the document vector, although for the
present we may think of them as either tf or tf-idf weights. In fact, a number
of weighting schemes are possible for query as well as document vectors, as
illustrated in Example 6.4 and developed further in Section 6.4.

Computing the cosine similarities between the query vector and each doc-
ument vector in the collection, sorting the resulting scores and selecting the
top K documents can be expensive — a single similarity computation can
entail a dot product in tens of thousands of dimensions, demanding tens of
thousands of arithmetic operations. In Section 7.1 we study how to use an in-
verted index for this purpose, followed by a series of heuristics for improving
on this.

✎ Example 6.4: We now consider the query best car insurance on a fictitious collection
with N = 1,000,000 documents where the document frequencies of auto, best, car and
insurance are respectively 5000, 50000, 10000 and 1000.

term query document product
tf df idf wt,q tf wf wt,d

auto 0 5000 2.3 0 1 1 0.41 0
best 1 50000 1.3 1.3 0 0 0 0
car 1 10000 2.0 2.0 1 1 0.41 0.82
insurance 1 1000 3.0 3.0 2 2 0.82 2.46

In this example the weight of a term in the query is simply the idf (and zero for a
term not in the query, such as auto); this is reflected in the column header wt,q (the en-
try for auto is zero because the query does not contain the termauto). For documents,
we use tf weighting with no use of idf but with Euclidean normalization. The former
is shown under the column headed wf, while the latter is shown under the column
headed wt,d. Invoking (6.9) now gives a net score of 0 + 0 + 0.82 + 2.46 = 3.28.

6.3.3 Computing vector scores

In a typical setting we have a collection of documents each represented by a
vector, a free text query represented by a vector, and a positive integer K. We

Online edition (c) 2009 Cambridge UP

6.3 The vector space model for scoring 121

0 1
0

1

jealous

gossip

v⃗(q)

v⃗(d1)

v⃗(d2)

v⃗(d3)

θ

! Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations V⃗(d1) and V⃗(d2)COSINE SIMILARITY

sim(d1, d2) =
V⃗(d1) · V⃗(d2)

|V⃗(d1)||V⃗(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors V⃗(d1) and V⃗(d2), while the denominator is the product of
their Euclidean lengths. The dot product x⃗ · y⃗ of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let V⃗(d) denote the document vector for d, with M components

V⃗1(d) . . . V⃗M(d). The Euclidean length of d is defined to be
√

∑
M
i=1 V⃗2

i (d).
The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-

NORMALIZATION the vectors V⃗(d1) and V⃗(d2) to unit vectors v⃗(d1) = V⃗(d1)/|V⃗(d1)| and



Another nice thing about this model: queries 
as vectors.

Of course, in reality, the number of dimensions will 
be much higher.
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sions in practice will be far larger than three: it will equal the vocabulary size
M.

To summarize, by viewing a query as a “bag of words”, we are able to
treat it as a very short document. As a consequence, we can use the cosine
similarity between the query vector and a document vector as a measure of
the score of the document for that query. The resulting scores can then be
used to select the top-scoring documents for a query. Thus we have

score(q, d) =
V⃗(q) · V⃗(d)

|V⃗(q)||V⃗(d)|
.(6.12)

A document may have a high cosine score for a query even if it does not
contain all query terms. Note that the preceding discussion does not hinge
on any specific weighting of terms in the document vector, although for the
present we may think of them as either tf or tf-idf weights. In fact, a number
of weighting schemes are possible for query as well as document vectors, as
illustrated in Example 6.4 and developed further in Section 6.4.

Computing the cosine similarities between the query vector and each doc-
ument vector in the collection, sorting the resulting scores and selecting the
top K documents can be expensive — a single similarity computation can
entail a dot product in tens of thousands of dimensions, demanding tens of
thousands of arithmetic operations. In Section 7.1 we study how to use an in-
verted index for this purpose, followed by a series of heuristics for improving
on this.

✎ Example 6.4: We now consider the query best car insurance on a fictitious collection
with N = 1,000,000 documents where the document frequencies of auto, best, car and
insurance are respectively 5000, 50000, 10000 and 1000.

term query document product
tf df idf wt,q tf wf wt,d

auto 0 5000 2.3 0 1 1 0.41 0
best 1 50000 1.3 1.3 0 0 0 0
car 1 10000 2.0 2.0 1 1 0.41 0.82
insurance 1 1000 3.0 3.0 2 2 0.82 2.46

In this example the weight of a term in the query is simply the idf (and zero for a
term not in the query, such as auto); this is reflected in the column header wt,q (the en-
try for auto is zero because the query does not contain the termauto). For documents,
we use tf weighting with no use of idf but with Euclidean normalization. The former
is shown under the column headed wf, while the latter is shown under the column
headed wt,d. Invoking (6.9) now gives a net score of 0 + 0 + 0.82 + 2.46 = 3.28.

6.3.3 Computing vector scores

In a typical setting we have a collection of documents each represented by a
vector, a free text query represented by a vector, and a positive integer K. We
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each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations V⃗(d1) and V⃗(d2)COSINE SIMILARITY

sim(d1, d2) =
V⃗(d1) · V⃗(d2)

|V⃗(d1)||V⃗(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors V⃗(d1) and V⃗(d2), while the denominator is the product of
their Euclidean lengths. The dot product x⃗ · y⃗ of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let V⃗(d) denote the document vector for d, with M components

V⃗1(d) . . . V⃗M(d). The Euclidean length of d is defined to be
√

∑
M
i=1 V⃗2

i (d).
The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-

NORMALIZATION the vectors V⃗(d1) and V⃗(d2) to unit vectors v⃗(d1) = V⃗(d1)/|V⃗(d1)| and



Which leads to the main drawback of the 
vector model:

Calculating multi-thousand-dimension dot-products 
over millions of documents is expensive.
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sions in practice will be far larger than three: it will equal the vocabulary size
M.

To summarize, by viewing a query as a “bag of words”, we are able to
treat it as a very short document. As a consequence, we can use the cosine
similarity between the query vector and a document vector as a measure of
the score of the document for that query. The resulting scores can then be
used to select the top-scoring documents for a query. Thus we have

score(q, d) =
V⃗(q) · V⃗(d)

|V⃗(q)||V⃗(d)|
.(6.12)

A document may have a high cosine score for a query even if it does not
contain all query terms. Note that the preceding discussion does not hinge
on any specific weighting of terms in the document vector, although for the
present we may think of them as either tf or tf-idf weights. In fact, a number
of weighting schemes are possible for query as well as document vectors, as
illustrated in Example 6.4 and developed further in Section 6.4.

Computing the cosine similarities between the query vector and each doc-
ument vector in the collection, sorting the resulting scores and selecting the
top K documents can be expensive — a single similarity computation can
entail a dot product in tens of thousands of dimensions, demanding tens of
thousands of arithmetic operations. In Section 7.1 we study how to use an in-
verted index for this purpose, followed by a series of heuristics for improving
on this.

✎ Example 6.4: We now consider the query best car insurance on a fictitious collection
with N = 1,000,000 documents where the document frequencies of auto, best, car and
insurance are respectively 5000, 50000, 10000 and 1000.

term query document product
tf df idf wt,q tf wf wt,d

auto 0 5000 2.3 0 1 1 0.41 0
best 1 50000 1.3 1.3 0 0 0 0
car 1 10000 2.0 2.0 1 1 0.41 0.82
insurance 1 1000 3.0 3.0 2 2 0.82 2.46

In this example the weight of a term in the query is simply the idf (and zero for a
term not in the query, such as auto); this is reflected in the column header wt,q (the en-
try for auto is zero because the query does not contain the termauto). For documents,
we use tf weighting with no use of idf but with Euclidean normalization. The former
is shown under the column headed wf, while the latter is shown under the column
headed wt,d. Invoking (6.9) now gives a net score of 0 + 0 + 0.82 + 2.46 = 3.28.

6.3.3 Computing vector scores

In a typical setting we have a collection of documents each represented by a
vector, a free text query represented by a vector, and a positive integer K. We



One solution: term-at-a-time scoring.
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COSINESCORE(q)
1 float Scores[N] = 0
2 Initialize Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d) in postings list
6 do Scores[d] += wft,d × wt,q
7 Read the array Length[d]
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]

! Figure 6.14 The basic algorithm for computing vector space scores.

seek the K documents of the collection with the highest vector space scores on
the given query. We now initiate the study of determining the K documents
with the highest vector space scores for a query. Typically, we seek these
K top documents in ordered by decreasing score; for instance many search
engines use K = 10 to retrieve and rank-order the first page of the ten best
results. Here we give the basic algorithm for this computation; we develop a
fuller treatment of efficient techniques and approximations in Chapter 7.

Figure 6.14 gives the basic algorithm for computing vector space scores.
The array Length holds the lengths (normalization factors) for each of the N
documents, whereas the array Scores holds the scores for each of the docu-
ments. When the scores are finally computed in Step 9, all that remains in
Step 10 is to pick off the K documents with the highest scores.

The outermost loop beginning Step 3 repeats the updating of Scores, iter-
ating over each query term t in turn. In Step 5 we calculate the weight in
the query vector for term t. Steps 6-8 update the score of each document by
adding in the contribution from term t. This process of adding in contribu-
tions one query term at a time is sometimes known as term-at-a-time scoringTERM-AT-A-TIME

or accumulation, and the N elements of the array Scores are therefore known
as accumulators. For this purpose, it would appear necessary to store, withACCUMULATOR

each postings entry, the weight wft,d of term t in document d (we have thus
far used either tf or tf-idf for this weight, but leave open the possibility of
other functions to be developed in Section 6.4). In fact this is wasteful, since
storing this weight may require a floating point number. Two ideas help alle-
viate this space problem. First, if we are using inverse document frequency,
we need not precompute idft; it suffices to store N/dft at the head of the
postings for t. Second, we store the term frequency tft,d for each postings en-
try. Finally, Step 12 extracts the top K scores – this requires a priority queue

Because each query term’s contribution is 
independent, we can calculate each term 
separately.



There are many variations on tf-idf.

Sublinear tf scaling: 

If a term occurs 20 times in a document, is it truly 20 times 
more relevant than a single occurrence?
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to use instead the logarithm of the term frequency, which assigns a weight
given by

wft,d =

{
1 + log tft,d if tft,d > 0
0 otherwise .(6.13)

In this form, we may replace tf by some other function wf as in (6.13), to
obtain:

wf-idft,d = wft,d × idft.(6.14)

Equation (6.9) can then be modified by replacing tf-idf by wf-idf as defined
in (6.14).

6.4.2 Maximum tf normalization

One well-studied technique is to normalize the tf weights of all terms occur-
ring in a document by the maximum tf in that document. For each document
d, let tfmax(d) = maxτ∈d tfτ,d, where τ ranges over all terms in d. Then, we
compute a normalized term frequency for each term t in document d by

ntft,d = a + (1 − a)
tft,d

tfmax(d)
,(6.15)

where a is a value between 0 and 1 and is generally set to 0.4, although some
early work used the value 0.5. The term a in (6.15) is a smoothing term whoseSMOOTHING

role is to damp the contribution of the second term – which may be viewed as
a scaling down of tf by the largest tf value in d. We will encounter smoothing
further in Chapter 13 when discussing classification; the basic idea is to avoid
a large swing in ntft,d from modest changes in tft,d (say from 1 to 2). The main
idea of maximum tf normalization is to mitigate the following anomaly: we
observe higher term frequencies in longer documents, merely because longer
documents tend to repeat the same words over and over again. To appreciate
this, consider the following extreme example: supposed we were to take a
document d and create a new document d′ by simply appending a copy of d
to itself. While d′ should be no more relevant to any query than d is, the use
of (6.9) would assign it twice as high a score as d. Replacing tf-idft,d in (6.9) by
ntf-idft,d eliminates the anomaly in this example. Maximum tf normalization
does suffer from the following issues:

1. The method is unstable in the following sense: a change in the stop word
list can dramatically alter term weightings (and therefore ranking). Thus,
it is hard to tune.

2. A document may contain an outlier term with an unusually large num-
ber of occurrences of that term, not representative of the content of that
document.



There are many variations on tf-idf.

Maximum tf normalization:
Longer documents have higher average TF, but are not 
necessarily more relevant.

This is especially important in collections with widely-
varying document lengths.
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to use instead the logarithm of the term frequency, which assigns a weight
given by

wft,d =

{
1 + log tft,d if tft,d > 0
0 otherwise .(6.13)

In this form, we may replace tf by some other function wf as in (6.13), to
obtain:

wf-idft,d = wft,d × idft.(6.14)

Equation (6.9) can then be modified by replacing tf-idf by wf-idf as defined
in (6.14).

6.4.2 Maximum tf normalization

One well-studied technique is to normalize the tf weights of all terms occur-
ring in a document by the maximum tf in that document. For each document
d, let tfmax(d) = maxτ∈d tfτ,d, where τ ranges over all terms in d. Then, we
compute a normalized term frequency for each term t in document d by

ntft,d = a + (1 − a)
tft,d

tfmax(d)
,(6.15)

where a is a value between 0 and 1 and is generally set to 0.4, although some
early work used the value 0.5. The term a in (6.15) is a smoothing term whoseSMOOTHING

role is to damp the contribution of the second term – which may be viewed as
a scaling down of tf by the largest tf value in d. We will encounter smoothing
further in Chapter 13 when discussing classification; the basic idea is to avoid
a large swing in ntft,d from modest changes in tft,d (say from 1 to 2). The main
idea of maximum tf normalization is to mitigate the following anomaly: we
observe higher term frequencies in longer documents, merely because longer
documents tend to repeat the same words over and over again. To appreciate
this, consider the following extreme example: supposed we were to take a
document d and create a new document d′ by simply appending a copy of d
to itself. While d′ should be no more relevant to any query than d is, the use
of (6.9) would assign it twice as high a score as d. Replacing tf-idft,d in (6.9) by
ntf-idft,d eliminates the anomaly in this example. Maximum tf normalization
does suffer from the following issues:

1. The method is unstable in the following sense: a change in the stop word
list can dramatically alter term weightings (and therefore ranking). Thus,
it is hard to tune.

2. A document may contain an outlier term with an unusually large num-
ber of occurrences of that term, not representative of the content of that
document.

smoothing term



There are many variations on tf-idf.
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Term frequency Document frequency Normalization
n (natural) tft,d n (no) 1 n (none) 1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine) 1√
w2

1+w2
2+...+w2

M

a (augmented) 0.5 +
0.5×tft,d

maxt(tft,d)
p (prob idf) max{0, log N−dft

dft
} u (pivoted

unique)
1/u (Section 6.4.4)

b (boolean)
{

1 if tft,d > 0
0 otherwise b (byte size) 1/CharLengthα, α < 1

L (log ave) 1+log(tft,d)
1+log(avet∈d(tft,d))

! Figure 6.15 SMART notation for tf-idf variants. Here CharLength is the number
of characters in the document.

3. More generally, a document in which the most frequent term appears
roughly as often as many other terms should be treated differently from
one with a more skewed distribution.

6.4.3 Document and query weighting schemes

Equation (6.12) is fundamental to information retrieval systems that use any
form of vector space scoring. Variations from one vector space scoring method
to another hinge on the specific choices of weights in the vectors V⃗(d) and
V⃗(q). Figure 6.15 lists some of the principal weighting schemes in use for
each of V⃗(d) and V⃗(q), together with a mnemonic for representing a spe-
cific combination of weights; this system of mnemonics is sometimes called
SMART notation, following the authors of an early text retrieval system. The
mnemonic for representing a combination of weights takes the form ddd.qqq
where the first triplet gives the term weighting of the document vector, while
the second triplet gives the weighting in the query vector. The first letter in
each triplet specifies the term frequency component of the weighting, the
second the document frequency component, and the third the form of nor-
malization used. It is quite common to apply different normalization func-
tions to V⃗(d) and V⃗(q). For example, a very standard weighting scheme
is lnc.ltc, where the document vector has log-weighted term frequency, no
idf (for both effectiveness and efficiency reasons), and cosine normalization,
while the query vector uses log-weighted term frequency, idf weighting, and
cosine normalization.

“SMART notation”

We can use different combinations of weighting 
schemes on the document vectors than on the 
query vectors.



There are many variations on tf-idf.
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L (log ave) 1+log(tft,d)
1+log(avet∈d(tft,d))

! Figure 6.15 SMART notation for tf-idf variants. Here CharLength is the number
of characters in the document.

3. More generally, a document in which the most frequent term appears
roughly as often as many other terms should be treated differently from
one with a more skewed distribution.

6.4.3 Document and query weighting schemes

Equation (6.12) is fundamental to information retrieval systems that use any
form of vector space scoring. Variations from one vector space scoring method
to another hinge on the specific choices of weights in the vectors V⃗(d) and
V⃗(q). Figure 6.15 lists some of the principal weighting schemes in use for
each of V⃗(d) and V⃗(q), together with a mnemonic for representing a spe-
cific combination of weights; this system of mnemonics is sometimes called
SMART notation, following the authors of an early text retrieval system. The
mnemonic for representing a combination of weights takes the form ddd.qqq
where the first triplet gives the term weighting of the document vector, while
the second triplet gives the weighting in the query vector. The first letter in
each triplet specifies the term frequency component of the weighting, the
second the document frequency component, and the third the form of nor-
malization used. It is quite common to apply different normalization func-
tions to V⃗(d) and V⃗(q). For example, a very standard weighting scheme
is lnc.ltc, where the document vector has log-weighted term frequency, no
idf (for both effectiveness and efficiency reasons), and cosine normalization,
while the query vector uses log-weighted term frequency, idf weighting, and
cosine normalization.

“SMART notation”

One common scheme: lnc.ltc



There are also numerous possible 
optimizations of the vector space model.

Index elimination:
Only consider postings with idf over some pre-set threshold.

Champion lists:
Pre-compute sets of high-scoring documents for each term in 
the dictionary; only do cosine computation for postings in a 
champion list.

Cluster pruning:
Cluster document vectors; select random subset from each 
cluster, and use those as the starting points for calculations.



Non-Boolean models of retrieval: Agenda

• Review of Boolean model and TF/IDF

• Simple extensions thereof

• Vector model

• Language Models and IR

• Matrix decomposition methods



The basic idea:

Treat each document as a representative text 
sampled from a “language”...

... build a probabilistic language model for each 
document...

... and use that to find the documents whose 
languages would be most likely to produce the query.

More formally, we want to rank documents d against 
query q by calculating: P (d|q)



How to do that?

P (d|q) = P (q|d)P (d)

P (q)

Documents assumed to be 
equally probable...

... ditto for queries...

... so what we are really doing is modeling the probability 
of the query q being generated by document d’s model.



We can use MLE to estimate          :P̂ (d|q)
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estimation (MLE) and the unigram assumption is:

P̂(q|Md) = ∏
t∈q

P̂mle(t|Md) = ∏
t∈q

tft,d

Ld
(12.9)

where Md is the language model of document d, tft,d is the (raw) term fre-
quency of term t in document d, and Ld is the number of tokens in docu-
ment d. That is, we just count up how often each word occurred, and divide
through by the total number of words in the document d. This is the same
method of calculating an MLE as we saw in Section 11.3.2 (page 226), but
now using a multinomial over word counts.

The classic problem with using language models is one of estimation (the
ˆ symbol on the P’s is used above to stress that the model is estimated):
terms appear very sparsely in documents. In particular, some words will
not have appeared in the document at all, but are possible words for the in-
formation need, which the user may have used in the query. If we estimate
P̂(t|Md) = 0 for a term missing from a document d, then we get a strict
conjunctive semantics: documents will only give a query non-zero probabil-
ity if all of the query terms appear in the document. Zero probabilities are
clearly a problem in other uses of language models, such as when predicting
the next word in a speech recognition application, because many words will
be sparsely represented in the training data. It may seem rather less clear
whether this is problematic in an IR application. This could be thought of
as a human-computer interface issue: vector space systems have generally
preferred more lenient matching, though recent web search developments
have tended more in the direction of doing searches with such conjunctive
semantics. Regardless of the approach here, there is a more general prob-
lem of estimation: occurring words are also badly estimated; in particular,
the probability of words occurring once in the document is normally over-
estimated, since their one occurrence was partly by chance. The answer to
this (as we saw in Section 11.3.2, page 226) is smoothing. But as people have
come to understand the LM approach better, it has become apparent that the
role of smoothing in this model is not only to avoid zero probabilities. The
smoothing of terms actually implements major parts of the term weighting
component (Exercise 12.8). It is not just that an unsmoothed model has con-
junctive semantics; an unsmoothed model works badly because it lacks parts
of the term weighting component.

Thus, we need to smooth probabilities in our document language mod-
els: to discount non-zero probabilities and to give some probability mass to
unseen words. There’s a wide space of approaches to smoothing probabil-
ity distributions to deal with this problem. In Section 11.3.2 (page 226), we
already discussed adding a number (1, 1/2, or a small α) to the observed

For the unigram case:
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counts and renormalizing to give a probability distribution.4 In this sec-
tion we will mention a couple of other smoothing methods, which involve
combining observed counts with a more general reference probability distri-
bution. The general approach is that a non-occurring term should be possi-
ble in a query, but its probability should be somewhat close to but no more
likely than would be expected by chance from the whole collection. That is,
if tft,d = 0 then

P̂(t|Md) ≤ cft/T

where cft is the raw count of the term in the collection, and T is the raw size
(number of tokens) of the entire collection. A simple idea that works well in
practice is to use a mixture between a document-specific multinomial distri-
bution and a multinomial distribution estimated from the entire collection:

P̂(t|d) = λP̂mle(t|Md) + (1 − λ)P̂mle(t|Mc)(12.10)

where 0 < λ < 1 and Mc is a language model built from the entire doc-
ument collection. This mixes the probability from the document with the
general collection frequency of the word. Such a model is referred to as a
linear interpolation language model.5 Correctly setting λ is important to theLINEAR

INTERPOLATION good performance of this model.
An alternative is to use a language model built from the whole collection

as a prior distribution in a Bayesian updating process (rather than a uniformBAYESIAN SMOOTHING

distribution, as we saw in Section 11.3.2). We then get the following equation:

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α
(12.11)

Both of these smoothing methods have been shown to perform well in IR
experiments; we will stick with the linear interpolation smoothing method
for the rest of this section. While different in detail, they are both conceptu-
ally similar: in both cases the probability estimate for a word present in the
document combines a discounted MLE and a fraction of the estimate of its
prevalence in the whole collection, while for words not present in a docu-
ment, the estimate is just a fraction of the estimate of the prevalence of the
word in the whole collection.

The role of smoothing in LMs for IR is not simply or principally to avoid es-
timation problems. This was not clear when the models were first proposed,
but it is now understood that smoothing is essential to the good properties

4. In the context of probability theory, (re)normalization refers to summing numbers that cover
an event space and dividing them through by their sum, so that the result is a probability distri-
bution which sums to 1. This is distinct from both the concept of term normalization in Chapter 2
and the concept of length normalization in Chapter 6, which is done with a L2 norm.
5. It is also referred to as Jelinek-Mercer smoothing.

What about when a query term isn’t 
present in the document?

Linear interpolation smoothing is a common solution.

Model from entire collection



The smoothing isn’t just to make the math work.

Online edition (c) 2009 Cambridge UP

12.2 The query likelihood model 245

counts and renormalizing to give a probability distribution.4 In this sec-
tion we will mention a couple of other smoothing methods, which involve
combining observed counts with a more general reference probability distri-
bution. The general approach is that a non-occurring term should be possi-
ble in a query, but its probability should be somewhat close to but no more
likely than would be expected by chance from the whole collection. That is,
if tft,d = 0 then

P̂(t|Md) ≤ cft/T

where cft is the raw count of the term in the collection, and T is the raw size
(number of tokens) of the entire collection. A simple idea that works well in
practice is to use a mixture between a document-specific multinomial distri-
bution and a multinomial distribution estimated from the entire collection:

P̂(t|d) = λP̂mle(t|Md) + (1 − λ)P̂mle(t|Mc)(12.10)

where 0 < λ < 1 and Mc is a language model built from the entire doc-
ument collection. This mixes the probability from the document with the
general collection frequency of the word. Such a model is referred to as a
linear interpolation language model.5 Correctly setting λ is important to theLINEAR

INTERPOLATION good performance of this model.
An alternative is to use a language model built from the whole collection

as a prior distribution in a Bayesian updating process (rather than a uniformBAYESIAN SMOOTHING

distribution, as we saw in Section 11.3.2). We then get the following equation:

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α
(12.11)

Both of these smoothing methods have been shown to perform well in IR
experiments; we will stick with the linear interpolation smoothing method
for the rest of this section. While different in detail, they are both conceptu-
ally similar: in both cases the probability estimate for a word present in the
document combines a discounted MLE and a fraction of the estimate of its
prevalence in the whole collection, while for words not present in a docu-
ment, the estimate is just a fraction of the estimate of the prevalence of the
word in the whole collection.

The role of smoothing in LMs for IR is not simply or principally to avoid es-
timation problems. This was not clear when the models were first proposed,
but it is now understood that smoothing is essential to the good properties

4. In the context of probability theory, (re)normalization refers to summing numbers that cover
an event space and dividing them through by their sum, so that the result is a probability distri-
bution which sums to 1. This is distinct from both the concept of term normalization in Chapter 2
and the concept of length normalization in Chapter 6, which is done with a L2 norm.
5. It is also referred to as Jelinek-Mercer smoothing.

It helps use the entire collection to inform an 
individual document’s score...

... and this effect can be affected by tuning the 
smoothing parameter.
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Precision
Rec. tf-idf LM %chg
0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.3 0.2761 0.3342 +21.0 *
0.4 0.2093 0.2572 +22.9 *
0.5 0.1558 0.2061 +32.3 *
0.6 0.1024 0.1405 +37.1 *
0.7 0.0451 0.0760 +68.7 *
0.8 0.0160 0.0432 +169.6 *
0.9 0.0033 0.0063 +89.3
1.0 0.0028 0.0050 +76.9
Ave 0.1868 0.2233 +19.55 *

! Figure 12.4 Results of a comparison of tf-idf with language modeling (LM) term
weighting by Ponte and Croft (1998). The version of tf-idf from the INQUERY IR sys-
tem includes length normalization of tf. The table gives an evaluation according to
11-point average precision with significance marked with a * according to a Wilcoxon
signed rank test. The language modeling approach always does better in these exper-
iments, but note that where the approach shows significant gains is at higher levels
of recall.

(page 263), suggests that it is superior. Ponte and Croft argued strongly for
the effectiveness of the term weights that come from the language modeling
approach over traditional tf-idf weights. We present a subset of their results
in Figure 12.4 where they compare tf-idf to language modeling by evaluating
TREC topics 202–250 over TREC disks 2 and 3. The queries are sentence-
length natural language queries. The language modeling approach yields
significantly better results than their baseline tf-idf based term weighting ap-
proach. And indeed the gains shown here have been extended in subsequent
work.

? Exercise 12.6 [⋆]

Consider making a language model from the following training text:

the martian has landed on the latin pop sensation ricky martin

a. Under a MLE-estimated unigram probability model, what are P(the) and P(martian)?

b. Under a MLE-estimated bigram model, what are P(sensation|pop) and P(pop|the)?

A Language Modeling Approach to Information Retrieval 

Jay M. Ponte and W. Bruce Croft 
Computer Science Department 

University of Massachusetts, Amherst 
{ponte, croft}&s.umass.edu 

Abstract Models of document indexing and docu- 
ment retrieval have been extensively studied. The in- 
tegration of these two classes of models has been the 
goal of several researchers but it is a very difficult prob- 
lem. We argue that much of the reason for this is the 
lack of an adequate indexing model. This suggests that 
perhaps a better indexing model would help solve the 
problem. However, we feel that making unwarranted 
parametric assumptions will not lead to better retrieval 
performance. Furthermore, making prior assumptions 
about the similarity of documents is not warranted ei- 
ther. Instead, we propose an approach to retrieval based 
on probabilistic language modeling. We estimate models 
for each document individually. Our approach to model- 
ing is non-parametric and integrates document indexing 
and document retrieval into a single model. One advan- 
tage of our approach is that collection statistics which 
are used heuristically in many other retrieval models are 
an integral part of our model. We have implemented 
our model and tested it empirically. Our approach sig- 
nificantly outperforms standard tf.idf weighting on two 
different collections and query sets. 

1 Introduction 

Over the past three decades, probabilistic models of doc- 
ument retrieval have been studied extensively. In gen- 
eral, these approaches can be characterized as methods 
of estimating the probability of relevance of documents 
to user queries. One component of a probabilistic re- 
trieval model is the indexing model, i.e., a model of the 
assignment of indexing terms to documents. We argue 
that the current indexing models have not led to im- 
proved retrieval results. We believe this is due to two 
unwarranted assumptions made by these models. We 
have taken a different approach based on non-parametric 
estimation that allows us to relax these assumptions. We 
have implemented our approach and empirical results on 
two different collections and query sets are significantly 
better than the standard tf.idf method of retrieval. Now 
we take a brief look at some existing models of document 
indexing. 

We begin our discussion of indexing models with the 
2-Poisson model, due to Bookstein and Swanson [l] and 
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ACM, Inc. To copy otherwise, to republish, to post on servers or 
to redistribute to lists, requires prior specific permission and/or 
fee. SIGIR’93, Melbourne, Australia @ 1998 ACM l-58113-015-5 
8/98 $5.00. 

also to Harter [7]. By analogy to manual indexing, the 
task was to assign a subset of words contained in a doc- 
ument (the ‘specialty words’) as indexing terms. The 
probability model was intended to indicate the useful in- 
dexing terms by means of the differences in their rate 
of occurrence in documents ‘elite’ for a given term, i.e., 
a document that would satisfy a user posing that sin- 
gle term as a query, vs. those without the property of 
eliteness. 

The success of the 2-Poisson model has been some- 
what limited but it should be noted that Robertson’s tf, 
which has been quite successful, was intended to behave 
similarly to the 2-Poisson model [12]. 

Other researchers have proposed a mixture model of 
more than two Poisson distributions in order to better 
fit the observed data. Margulis proposed the n-Poisson 
model and tested the idea empirically [lo]. The conclu- 
sion of this study was that a mixture of n-Poisson distri- 
butions provides a very close fit to the data. In a certain 
sense, this is not surprising. For large values of n one 
can fit a very complex distribution arbitrarily closely by 
a mixture of n parametric models if one has enough data 
to estimate the parameters [18]. However, what is some- 
what surprising is the closeness of fit for relatively small 
values of n reported by Margulis [lo]. 

Nevertheless, the n-Poisson model has not brought 
about increased retrieval effectiveness in spite of the close 
fit to the data. In any event, the semantics of the under- 
lying distributions are less obvious in the n-Poisson case 
as compared to the 2-Poisson case where they model the 
concept of eliteness. 

Apart from the adequacy of of the available index- 
ing models, estimating the parameters of these models 
is a difficult problem. Researchers have looked at this 
problem from a variety of perspectives and we will dis- 
cuss several of these of these approaches in section 2. In 
addition, as previously mentioned, many of the current 
indexing models make assumptions about the data that 
we feel are unwarranted. 

 The parametric assumption. 

 Documents are members of pre-defined classes. 

In our approach we relax these two assumptions. 
Rather than making parametric assumptions, as is done 
in the 2-Poisson model it is assumed that terms follow a 
mixture of two Poisson distributions, as Silverman said, 
“the data will be allowed to speak for themselves [16].” 
We feel that it is unnecessary to construct a parametric 
model of the data when we have the actual data. Instead, 
we rely on non-parametric methods. 

Regarding the second assumption, the 2-Poisson model 
was originally based on the idea of ‘eliteness’ [7]. It was 
assumed that a document elite for a given term would 
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Issues with the LM approach:

1. Smoothing parameters can be finicky and hard to tune 
properly

2. Difficult to expand beyond unigram models

3. No obvious way to incorporate relevance feedback

More recent work has focused on addressing 
issues #2 and #2.



Document-likelihood model:

Directly estimate P(d|q) by building a LM from the 
query.

1. Less text to work with, so smaller (and less accurate) 
model...

2. However, relevance feedback is easy: incorporate 
words from relevant documents into query model.

Of course, other variations are possible (see text).



Non-Boolean models of retrieval: Agenda

• Review of Boolean model and TF/IDF

• Simple extensions thereof

• Vector model

• Language Models and IR

• Matrix decomposition methods



Quick linear algebra review:

S =

0

@
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A

Rank: 3

Eigenvalues: values of lambda such that
C~x = �~x

S has three: �1 = 30,�2 = 20,�3 = 1
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Matrix decomposition:

S =

0

@
30 0 0
0 20 0
0 0 1

1

A

There exists an eigendecomposition S = U⇤U�1

Where the columns of U are the eigenvectors of S, and 
Lambda is a diagonal matrix whose entries are the 
eigenvalues of S in decreasing order.

This works for square matrices...



t1 t2 t3 t4 ... tn

d1

d2

d3

d4

...

dm



Singular Value Decomposition:

For an M by N matrix C, we can decompose as follows:

Where the eigenvalues λi... λr of CCT are the same as the 
eigenvalues of CTC...

C = U⌃V T

... and ∑ is a diagonal-ish matrix containing the singular 
values of C, which happen to be 

p
�i
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! Figure 18.1 Illustration of the singular-value decomposition. In this schematic
illustration of (18.9), we see two cases illustrated. In the top half of the figure, we
have a matrix C for which M > N. The lower half illustrates the case M < N.

as the reduced SVD or truncated SVD and we will encounter it again in Ex-REDUCED SVD
TRUNCATED SVD ercise 18.9. Henceforth, our numerical examples and exercises will use this

reduced form.

✎ Example 18.3: We now illustrate the singular-value decomposition of a 4 × 2 ma-
trix of rank 2; the singular values are Σ11 = 2.236 and Σ22 = 1.

C =

⎛

⎜⎜⎝

1 −1
0 1
1 0
−1 1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−0.632 0.000
0.316 −0.707
−0.316 −0.707
0.632 0.000

⎞

⎟⎟⎠

(
2.236 0.000
0.000 1.000

) (
−0.707 0.707
−0.707 −0.707

)
.(18.11)

As with the matrix decompositions defined in Section 18.1.1, the singu-
lar value decomposition of a matrix can be computed by a variety of algo-
rithms, many of which have been publicly available software implementa-
tions; pointers to these are given in Section 18.5.

? Exercise 18.4

Let

C =

⎛

⎝
1 1
0 1
1 0

⎞

⎠(18.12)

be the term-document incidence matrix for a collection. Compute the co-occurrence
matrix CCT. What is the interpretation of the diagonal entries of CCT when C is a
term-document incidence matrix?

... CTC is a term-term co-occurrence matrix for our 
collection...



We can use the SVD to compute a low-rank 
approximation of C:

1. Compute SVD of C;

2. Compute from ∑ the matrix ∑k by zero-ing out ∑’s r - 
k smallest singluar values.

3. Compute Ck = U⌃kV
T
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! Figure 18.2 Illustration of low rank approximation using the singular-value de-
composition. The dashed boxes indicate the matrix entries affected by “zeroing out”
the smallest singular values.

1. Given C, construct its SVD in the form shown in (18.9); thus, C = UΣVT.

2. Derive from Σ the matrix Σk formed by replacing by zeros the r − k small-
est singular values on the diagonal of Σ.

3. Compute and output Ck = UΣkVT as the rank-k approximation to C.

The rank of Ck is at most k: this follows from the fact that Σk has at most
k non-zero values. Next, we recall the intuition of Example 18.1: the effect
of small eigenvalues on matrix products is small. Thus, it seems plausible
that replacing these small eigenvalues by zero will not substantially alter the
product, leaving it “close” to C. The following theorem due to Eckart and
Young tells us that, in fact, this procedure yields the matrix of rank k with
the lowest possible Frobenius error.

Theorem 18.4.

min
Z| rank(Z)=k

∥C − Z∥F = ∥C − Ck∥F = σk+1.(18.16)

Recalling that the singular values are in decreasing order σ1 ≥ σ2 ≥ · · ·,
we learn from Theorem 18.4 that Ck is the best rank-k approximation to C,
incurring an error (measured by the Frobenius norm of C−Ck) equal to σk+1.
Thus the larger k is, the smaller this error (and in particular, for k = r, the
error is zero since Σr = Σ; provided r < M, N, then σr+1 = 0 and thus
Cr = C).

To derive further insight into why the process of truncating the smallest
r− k singular values in Σ helps generate a rank-k approximation of low error,
we examine the form of Ck:

Ck = UΣkVT(18.17)



1. Take query vector...

2. Map to low-dimensional space:

3. Compute cosine similarity in low-d space.

Latent Semantic Indexing uses the new 
matrices to perform dimensionality reduction.

~qk = ⌃�1
k UT

k ~q

This often results in good and interesting 
results... but at a very high computational cost.



TABLE 1 

Technical Memo Example 
Ti ties: 
cl: Human machine interface for Lab ABC computer applications 
c2: A SUNS of user opinion of computer system response time 
c3: The EPS user integace management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user-perceived response time to error measurement 

ml: The generation of random, binary, unordered trees 
m2: The intersection graph of paths in frees 
m3: Graph minors IV: Widths of rrees and well-quasi-ordering 
m4: Graph minors: A survey 

Terms 

human 
intet$ace 
computer 
user 
system 
response 
time 
EPS 
survey 
trees 
wwh 
minors 

Documents 
cl c2 c3 c4 c5 ml 
1 0 0 1 0 0 
1 0 1 0 0 0 
1 1 0 0 0 0 
0 I 1 0 1 0 
0 1 1 2 0 0 
0 1 0 0 1 0 
0 1 0 0 1 0 
0 0 1 1 0 0 
0 1 0 0 0 0 
0 0 0 0 0 1 
0 0 0 0 0 0 
0 0 0 0 0 0 

m2 m3 m4 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
1 1 0 
1 1 1 
0 1 1 

Multiplying out the matrices TSD’ gives %, the estimate of X, which at the bottom of Table 3. 

There are two things to note about the % matrix. (1) It does not match the original term by 
document matrix X (it would get closer and closer as more and more singular values were 
kept). (2) This is what we want; we do not want perfect fit because we think some of the O’s 
in X should be closer to 1 and vice versa. Note in particular that the cells in bold in the 2 
matrix corresponding to the zero entries for “human” and “computer” in the X matrix now 
contain the values .38 and .36 for “human”, and -18 and .24 for “computers” for titles c3 and 
c5 respectively, and that all these values are considerably higher than any for the comparable 
terms in any of the math titles. Thus, the method has automatically filled in appropriate term 
strengths on the basis of structure implicit in overall term by document matrix. Note also, for 
example, that if one computes the cosine between user and human, which do not occur in 
any common document is 0.89 in the reduced SVD space, where it was 0.0 in the raw vector 
space. This last observation illustrates the method’s ability to capture implicit synonymy. 
The same effects can be seen graphically in Figure 5, where the geometric interpretation of 
the two- factor solution shows clearly that all the human-computer papers have been nicely 
separated from all rhe math papers. Both terms and documents are represented in this two- 
dimensional space. The “human interaction with computers” query has been treated as a 
“pseudo-document” and placed at the weighted vector sum of its component terms. The angle 
of its vector with that of all relevant documents, whether they share terms with it or not, is 
less than with any of the math papers. 
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5. A 2-dimensional plot of 12 Terms and 9 Documents from the example set. 
Terms arc rcprcscntcd by filled circles. Documents arc shown as open squares, 
and component terms arc indicated parcnlhclically. The query (“human 
cornpurer interaction”) is represented as a pseudo-document at point 4. Axes 
arc approprialcly scaled for Document-Document or Term-Term comparisons 
The dotted cone contain:; all points within a cosine of -9 from the query 4. All 
documents about human-computer (cl-~5) are within this cont. but none of the 
graph theory documents (ml-m4) arc nearby. In this rcduccd space, even 
documents c3 and c5, which sham no trxms wilh the query. are very close to the 
query direction. 

Ail text was preprocessed to isolate possible compound noun phrases. Potential phrases were 
word strings falling between any two of a set of I60 delimiters and punctuation marks. 
Inflectional suffixes (past tense, plurals, progressive tense, and adverbials) were removed 
from the words. The resulting list of phrases was manually edited to include only noun 
phrases. Compound phrases ranged from two to eight words. All full compound phrases, 
single. words making up the compounds, and single words that occurred in more than two 
documents and were not among the most frequent I50 English words were entered into the 
latent semantic structure analysis. Of the. 7,100 terms in the system lexicon, 2,879 were 
compounds. 
3.2.2 SVD Analysis 

A singular value decomposition on 7,100 terms and 728 documents, representing 480 
research groups in 100 dimensions was performed. The collection of all technical 
memorandum abstracts and the work descriptions for a single organ.ization were treated as 
two separate documents for the purposes of analysis. For some of the work descriptions the 
only atvailable identifying information was the superordinate department 1eveI rather than the 
research group. 
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Besides simply reducing dimensionality, LSA 
can help deal with synonymy:

1. Dumais S, Furnas G, Landauer T, Deerwester S, Harshman R. Using latent semantic analysis to improve access to textual information. CHI '88: Proceedings of the SIGCHI conference on Human 
factors in computing systems. 1988 May 1. 

“car” and “auto” will be grouped closely together, 
for example.

CHI ‘88 
We now consider how keyword and LSI systems would 
respond to a query or request like the following: “Z want 
memos about human computer interaction”. In standard 
keyword systems, retrieval is based on term overlap 
between the query and titles (or text objects, in the more 
general case). The words human and computer occur in 
both the query and titles, so a system that simply matched 
terms would return titles cl, c2 and c4 in response to the 
query. But titles c3 and c5, which are also relevant, would 
be missed because they do not share any terms with the 
query, This is the synonymy problem - some authors write 
about human computer interaction, others about user 
interfaces, and so on. 
The latent semantic indexing (LSI) method cau improve 
this performance. Singular-value decomposition (SVD) is 
used to approximate the original term and title matrix by 
means of a smaller number of orthogonal dimensions. For 
this example, we carefully chose terms by titles to get a 
good approximation using just two dimensions. Figure 2 
shows the two-dimensional representation of terms and 
document titles; their coordinates are simply the first two 
columns in the corresponding T and 0 matrices. Terms 
are shown as filled circles and q umbcrcd from 1 to 12. 
Document tides are represented by open squares with the 
terms contained in them indicated parentheticalIy by the 
appropriate numbers - e.g., title cl contains the terms 
human, interface and computer. Similarity in this space is 
measured by cosines (or dot products). Note that in this 
representation titles cl and c5 are near each other even 
though they share no terms. This is because the derived 
“meaning” of terms and objects (their location in the 
space) depends on the total pattern of term usage. 
To respond to a query, it must first be represented as a 
“pseudo-object” in the space. This is done by taking a 
weighted vector average of the terms in the query - here 
labeled 4. We calculate the cosine between this query 
vector (4) and each of the title vectors (cl-& ml-m4). 
The region within the dashed lines contains all titles whose 
cosine with the query, 4, is .9 or greater. In this example, 
the system returns all relevant titles and no irrelevant ones. 
Titles c3 aud c5, which are missed by ordinary keyword 
techuiques, are very similar to the query in this 
representation. 

TESTS AND APPLICATIONS OF THE LSI METHOD 
‘I%e LSI method has also been tried on more realistic cases 
with promising results. First, we examined performance in 
two standard information science document collections for 
which user queries and relevance judgments were 
available. For each of a set of queries posed by real usem, 
attempts have been made to identify all relevant 
documents in the collection. These datasets provide a 
useful testbed for the systematic evaluation of different 
indexing and retrieval methods. We also applied the LSI 
method to two local information retrieval problems - one 
helps users find technical memoranda relevant to either 
specific queries or to a more general interest profile, and 
the other finds domain experts within a large research 
organization. 

fnformation Science Datasets 
Performance of information retrieval systems is typically 
summarized iu terms of two parameters - precision and 
recall. Recall is the proportion of documents relevant to a 
query that are retrieved by the systlem (ranging from 0 to 
1); and precision is the proportion of documents in the set 
returned to the user that are relevaalt (again, rang@ from 
0 to I). An ideal retrieval system would have both high 
recall and high precision - that is, iit would return all and 
only relevant documents. 
The first database consisted of 1033 medical reference 
abstracts and titles. Automatic indexing found 5823 terms 
occurring in more than one document. A 100-factor SVD 
of the 5823 term by 1033 document matrix was obtained 
and retrieval effectiveness evaluated against 30 queries 
available with the dataset. The average precision over 9 
levels of recall from .lO to .90, was .51 for LSI and .45 for 
term matching. This difference was largest at high levels 
of recall. The 13% average improvement over raw term 
matching shows that LSI captured some structure in the 
data which was missed by raw term matching. 
The second standard dataset consisted of 1460 information 
science abstracts that have been consistently difficult for 
automatic retrieval methods. Automatic indexing found 
5135 terms occurring in more than one document. A lOO- 
factor SVD solution was obtained for the 5135 term by 
1460 document matrix and evaluated using 35 queries 
available with the dataset. For this dataset, LSI offered no 
improvement over term matching methods; precision for 
both methods was below -30, even for the lowest levels of 
recall. We suspect that poor performance in this dataset is 
due to low reliability of relevance judgments, poorly stated 
queries, and the relative homogeneity of the documents. 

Bellcore Technical Memoranda 
One local test involved a set of Bellcore technical 
memoranda like those illustrated in Figure 1. For this test, 
a text object consisted of title, abstract, author names, and 
additional author-provided keywords. Approximately 
2000 memos were automatically characterized by the 3424 
terms which occvrrcd in more than two memoranda, and 
then evaluated using a loo-factor SVD solution. We 
selected documents written by people we knew well and 
looked for the most similar documents in the derived 
factor space. We were encouraged by the occurrence of 
many cases like the example in which “nearby” documents 
included some documents which shared no keywords with 
the query document, and by the lack of dramatic failures. 
We are now in the process of collecting more systematic 
relevance judgments for this dataset. 
This application also suggests that LSI might be especially 
useM in filtering or selection services. People can be 
represented in the derived factor space as “pseudo- 
documents”. For example, they can be placed at the 
centroid of the documents they have written or previously 
found useful. As new documents are added into the space, 
they can be compmd to the points representing people, 
and suggested to “nearby” people as potentially of interest. 
Since people can be characterized by their positions io a 
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Next up: Index construction & compression


