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Study Goals

• Formulate a theoretical foundation for user-refined 
queries.

• Define a taxonomy for query refinement strategies
• Compare effectiveness of query refinement 

strategies



Computer-Generated 
Reformulations
• What we covered in class/book chapters



Query Session Boundary 
Detection
• Answers  the  question:  “Is  a  query  a  new  query  or  a  
reformulation?”

• Can simply be approximated from difference in 
query content and time

• This work solves the problem backwards: a session 
is a string of reformulated queries.



Click Data Analysis

• One  Question:  “If  a  result  is  clicked,  does  that  make  
it  relevant?”

• Another:  “If  a  result  was  clicked,  was  the  query  
well-formed?”



Taxonomy



Definitions
• Word Reorder: All or Part of Query is two words reversed.
• Whitespace and Punctuation:  Only whitespace/punctuation changed.
• Remove Words: Words are removed, also can be reordered.
• Add Words: Words are added, also can be reordered.
• URL Stripping: Remove  ‘.com’  ‘www.’  ‘http’
• Stemming: Stemmed form of both queries same.
• Form Acronym: First characters of query form new query. (must be 

whole query)
• Expand Acronym: First query is (not contains)acronym that is expanded.
• Substring: Second prefix or suffix of first.
• Superstring: First prefix or suffix of second.
• Abbreviation: One or more words are prefixed or suffixed.
• Word Substitution: Entire Query is related or every word is related to 

corresponding word. (according to WordNet)
• Spelling Correction: Levenshtein Edit Distance <= 2



Undetected Reformulations

• Semantic Rephrasing: Same meaning from 
semantically unrelated terms.

• Multi-Reformulations: e.g. Add & Spelling Correct, 
URL-Strip & Whitespace



Limitations
• Low Edit Distance
• WordNet
• URL Stripping too explicit
• Abbreviations require strict substrings



Experiment



Experiment

• Optimizing for Precision
• 100  AOL  Users’  queries  manually  classified:  9,091  

query pairs. (All exact duplicates removed)
• 2,483 reformulations and 6,608 new queries (72% 

accuracy baseline)



Results

• Each study used different data
• Precision might have been higher



Results

• 36,389,567 total queries in logs
• 16,069,421 identified as new queries
• 14,861,326 exact same
• 3,411,706 reformulations



Click Patterns

• Ratio 5:4 of clicks to skips in data



Click Patterns



Click URL



Click URL



Limitations

• Lack of Context
• Normalized Query Logs
• Ambiguous Queries
• Search Engine Effects



Applications

• Search Interface: Like clicked links turn purple, 
ignored links can grey out.

• Session Boundary Detection

• Better Intelligent Query Assistance

• Personalized Search
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Goal

• Generate related suggested queries for a query
• Framework for synthesizing suggestions
• Transformations
• Suggestion ranking technique
• Evaluation



Synthesizing Queries



Relaxing User Queries

• Remove unimportant terms
• Considered as a sequence labelling problem
• Training Data is generated from query sessions 

(90s) that differ in one term in reformulation, and 
were skip-click.



Generating Suggestion  
Candidates



Co-occurrence in query sessions

• Suggest query reformulations that have been seen 
in the logs.

• To account for common queries overall, divide by 
the frequency of the query to get PMI*

• Account for outliers by moving to LLR:
• 𝐿𝐿𝑅 𝑞௡, 𝑞௖ = 𝑝 𝑞௡, 𝑞௖ 𝑝𝑚𝑖 𝑞௡, 𝑞௖ +
𝑝 𝑞௡, 𝑞௖ 𝑝𝑚𝑖 𝑞௡, 𝑞௖ + 𝑝 𝑞௡, 𝑞௖ 𝑝𝑚𝑖 𝑞௡, 𝑞௖ +
𝑝 𝑞௡, 𝑞௖ 𝑝𝑚𝑖 𝑞௡, 𝑞௖

*And take the log, but  that  doesn’t  affect  order.



Semantic relations from web 
corpus 
• Replace phrases with phrase having a similar 

distribution in a large web corpus



Substitutions from co-clicked URL 
Queries
• Connect queries that have the same link clicked
• Removing URLs that are exceedingly popular (> 200 

queries matched)
• For very unpopular domains, consider all URLs of 

that domain as the same



Context from original query

• Return the non-critical terms to the queries formed 
by the above methods

• E.g. (acoustic guitar strings -> classical guitar -> 
classical guitar strings)



Ranking Suggestions

• Well-formedness (real-world concepts)
• Relevance to original query



Ranking

• Learn  ‘good’  vs  ‘bad’  using  Gradient  Boosting  
Decision Tree

• Prune  poor  suggestions  (<50%  chance  of  ‘good’)
• Rank according to probability



Filtering

• Overly similar queries
• Queries with few important/no important results
• Pick the highest ranked suggestions in-order, 

ignoring suggestions that fail the above.



Experiment

• Randomly Sampled 10,000 of 100,000 Yahoo! 
Queries (without suggestions)

• 10-fold validation
• Query suggestions were human-scored  as  ‘good’  or  
‘bad’



Examples



What does this graph mean?
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Number of good suggestions per 
query



Distribution of good suggestions for 
each candidate generation source





Conclusion (my words, not theirs)

• Applies to queries for which existing systems 
produce no suggestions.

• Provides not zero numbers of good suggestions.
• Therefore, must be an improvement.
• Individual portions seem only barely significantly 

improved, value appears to be in combined 
approach.
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Goal

• Learn a query suggestion model that can be applied 
outside the set of queries in the query logs



Proposed Framework

• Target Generation: How useful is the suggestion
• Features: Lexical and result set
• Ranking Model: Regression / ML
• Candidates: Additional candidates are synthesized



Target Generation

• Filter out new queries and un-useful queries.
• Useful reformulations result in a click on a link not 

returned by the first query or returned later by the 
first query.

• Correct task boundary errors introduced by 
common terms (that tend to be searched after 
many queries)



Task Detection



Features



Features



Aboutness



Synthetic Suggestion

• Less important units dropped or replaced
• Replaced  with  ‘contextually  similar’  terms:  terms  whose  

clicks occur on the same documents

• Add most frequent extensions (Machine learning 
away irrelevant suggestions)



Experimental Setup

• Query Set: random 912 anonymized queries
• Manual Annotation: 8 professional evaluators
• Annotation Guidelines: 4 levels of ratings











Example Search on Modern 
System
• I’m  looking  for  a  drug  that  stops  the  metabolism  of  

Alcohol and causes a hangover
• I’ve  forgotten  its  name














