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MoJvaJon	  

•  Many	  compuJng	  problems	  use	  large	  graphs	  
– Web	  graphs	  
– Social	  networks	  
– TransportaJon	  routes	  
– CitaJon	  relaJonships	  between	  publicaJons	  

•  Efficient	  processing	  is	  a	  challenge	  
•  Pregel:	  a	  vertex-‐centric	  approach	  to	  distribute	  
large	  graphs	  processing	  
	  



Current	  Approaches	  
•  No	  scalable	  general-‐purpose	  system	  for	  distributed	  
processing	  of	  large	  graphs	  

•  Four	  opJons:	  
1)  A	  custom	  distributed	  system	  for	  each	  new	  algorithm.	  
2)  MapReduce.	  sub-‐opJmal	  performance	  and	  usage.	  
3)  A	  single-‐machine	  library	  such	  as	  BGL,	  LEDA,	  JSDL,	  etc.	  
4)  An	  exisJng	  parallel	  graph	  system	  library	  i.e.	  Parallel	  

BGL	  or	  CGMgraph.	  No	  fault	  tolerance.	  

	  



Pregel	  

•  Pregel:	  scalable	  fault	  tolerance	  plaYorm	  with	  
API	  for	  arbitrary	  graph	  algorithms	  

•  Pure	  message	  passing	  model	  
– Network	  transfers	  are	  only	  messages	  
–  In	  MapReduce,	  network	  transfers	  are	  the	  enJre	  
state	  of	  the	  graph	  

•  Similar	  to	  MapReduce	  in	  sense	  that	  	  
–  focusing	  on	  a	  local	  acJon	  
– processing	  each	  item	  independently	  
– composing	  the	  results	  of	  acJons	  



Pregel	  

•  A	  sequence	  of	  iteraJons,	  called	  supersteps	  
•  Input:	  a	  directed	  graph	  
•  At	  each	  superstep:	  
– a	  user-‐defined	  funcJon	  is	  ran	  for	  each	  vertex	  
–  read	  messages	  sent	  to	  V	  in	  superstep	  S-‐1	  
– send	  messages	  to	  other	  verJces	  to	  receive	  at	  S+1	  
– modify	  the	  state	  of	  V	  and	  its	  outgoing	  edges	  

•  Output:	  a	  directed	  graph	  isomorphic	  to	  the	  
input,	  or	  with	  added/removed	  verJces/edges	  



Model	  of	  ComputaJon	  

•  Superstep	  0	  :	  every	  vertex	  is	  acJve	  
•  A	  vertex	  deacJvates	  itself	  by	  voJng	  to	  halt	  
•  A	  vertex	  is	  reacJvated	  if	  it	  recieves	  an	  external	  
message	  

•  Algorithm	  terminates	  if	  all	  verJces	  are	  inacJve	  

and fault-tolerant platform with an API that is sufficiently

flexible to express arbitrary graph algorithms. This paper

describes the resulting system, called Pregel
1
, and reports

our experience with it.

The high-level organization of Pregel programs is inspired

by Valiant’s Bulk Synchronous Parallel model [45]. Pregel

computations consist of a sequence of iterations, called su-
persteps. During a superstep the framework invokes a user-

defined function for each vertex, conceptually in parallel.

The function specifies behavior at a single vertex V and a

single superstep S. It can read messages sent to V in su-

perstep S − 1, send messages to other vertices that will be

received at superstep S + 1, and modify the state of V and

its outgoing edges. Messages are typically sent along outgo-

ing edges, but a message may be sent to any vertex whose

identifier is known.

The vertex-centric approach is reminiscent of MapReduce

in that users focus on a local action, processing each item

independently, and the system composes these actions to lift

computation to a large dataset. By design the model is well

suited for distributed implementations: it doesn’t expose

any mechanism for detecting order of execution within a

superstep, and all communication is from superstep S to

superstep S + 1.

The synchronicity of this model makes it easier to reason

about program semantics when implementing algorithms,

and ensures that Pregel programs are inherently free of dead-

locks and data races common in asynchronous systems. In

principle the performance of Pregel programs should be com-

petitive with that of asynchronous systems given enough

parallel slack [28, 34]. Because typical graph computations

have many more vertices than machines, one should be able

to balance the machine loads so that the synchronization

between supersteps does not add excessive latency.

The rest of the paper is structured as follows. Section 2

describes the model. Section 3 describes its expression as

a C++ API. Section 4 discusses implementation issues, in-

cluding performance and fault tolerance. In Section 5 we

present several applications of this model to graph algorithm

problems, and in Section 6 we present performance results.

Finally, we discuss related work and future directions.

2. MODEL OF COMPUTATION

The input to a Pregel computation is a directed graph in

which each vertex is uniquely identified by a string vertex
identifier. Each vertex is associated with a modifiable, user

defined value. The directed edges are associated with their

source vertices, and each edge consists of a modifiable, user

defined value and a target vertex identifier.

A typical Pregel computation consists of input, when the

graph is initialized, followed by a sequence of supersteps sep-

arated by global synchronization points until the algorithm

terminates, and finishing with output.

Within each superstep the vertices compute in parallel,

each executing the same user-defined function that expresses

the logic of a given algorithm. A vertex can modify its state

or that of its outgoing edges, receive messages sent to it

in the previous superstep, send messages to other vertices

(to be received in the next superstep), or even mutate the

1
The name honors Leonhard Euler. The Bridges of Königs-

berg, which inspired his famous theorem, spanned the Pregel

river.
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Vote to halt
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Figure 1: Vertex State Machine

topology of the graph. Edges are not first-class citizens in

this model, having no associated computation.

Algorithm termination is based on every vertex voting to
halt. In superstep 0, every vertex is in the active state; all

active vertices participate in the computation of any given

superstep. A vertex deactivates itself by voting to halt. This

means that the vertex has no further work to do unless trig-

gered externally, and the Pregel framework will not execute

that vertex in subsequent supersteps unless it receives a mes-

sage. If reactivated by a message, a vertex must explicitly

deactivate itself again. The algorithm as a whole terminates

when all vertices are simultaneously inactive and there are

no messages in transit. This simple state machine is illus-

trated in Figure 1.

The output of a Pregel program is the set of values ex-

plicitly output by the vertices. It is often a directed graph

isomorphic to the input, but this is not a necessary prop-

erty of the system because vertices and edges can be added

and removed during computation. A clustering algorithm,

for example, might generate a small set of disconnected ver-

tices selected from a large graph. A graph mining algorithm

might simply output aggregated statistics mined from the

graph.

Figure 2 illustrates these concepts using a simple example:

given a strongly connected graph where each vertex contains

a value, it propagates the largest value to every vertex. In

each superstep, any vertex that has learned a larger value

from its messages sends it to all its neighbors. When no

further vertices change in a superstep, the algorithm termi-

nates.

We chose a pure message passing model, omitting remote

reads and other ways of emulating shared memory, for two

reasons. First, message passing is sufficiently expressive that

there is no need for remote reads. We have not found any

graph algorithms for which message passing is insufficient.

Second, this choice is better for performance. In a cluster

environment, reading a value from a remote machine in-

curs high latency that can’t easily be hidden. Our message

passing model allows us to amortize latency by delivering

messages asynchronously in batches.

Graph algorithms can be written as a series of chained

MapReduce invocations [11, 30]. We chose a different model

for reasons of usability and performance. Pregel keeps ver-

tices and edges on the machine that performs computation,

and uses network transfers only for messages. MapReduce,

however, is essentially functional, so expressing a graph algo-

rithm as a chained MapReduce requires passing the entire

state of the graph from one stage to the next—in general

requiring much more communication and associated serial-

ization overhead. In addition, the need to coordinate the

steps of a chained MapReduce adds programming complex-

ity that is avoided by Pregel’s iteration over supersteps.
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Example	  

3 6 2 1 Superstep 0

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

3. THE C++ API

This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.

Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments

define three value types, associated with vertices, edges,

and messages. Each vertex has an associated value of the

specified type. This uniformity may seem restrictive, but

users can manage it by using flexible types like protocol

buffers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which

will be executed at each active vertex in every superstep.

Predefined Vertex methods allow Compute() to query infor-

mation about the current vertex and its edges, and to send

messages to other vertices. Compute() can inspect the value

associated with its vertex via GetValue() or modify it via

MutableValue(). It can inspect and modify the values of

out-edges using methods supplied by the out-edge iterator.

These state updates are visible immediately. Since their vis-

ibility is confined to the modified vertex, there are no data

races on concurrent value access from different vertices.

The values associated with the vertex and its edges are the

only per-vertex state that persists across supersteps. Lim-

iting the graph state managed by the framework to a single

value per vertex or edge simplifies the main computation

cycle, graph distribution, and failure recovery.

3.1 Message Passing

Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and

the name of the destination vertex. The type of the message

value is specified by the user as a template parameter of the

Vertex class.

A vertex can send any number of messages in a superstep.

All messages sent to vertex V in superstep S are available,

via an iterator, when V ’s Compute() method is called in

superstep S + 1. There is no guaranteed order of messages

in the iterator, but it is guaranteed that messages will be

delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over

its outgoing edges, sending a message to the destination ver-

tex of each edge, as shown in the PageRank algorithm in

Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier

of a non-neighbor from a message received earlier, or ver-

tex identifiers could be known implicitly. For example, the

graph could be a clique, with well-known vertex identifiers

V1 through Vn, in which case there may be no need to even

keep explicit edges in the graph.

When the destination vertex of any message does not ex-

ist, we execute user-defined handlers. A handler could, for

example, create the missing vertex or remove the dangling

edge from its source vertex.

3.2 Combiners

Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some

cases with help from the user. For example, suppose that

Compute() receives integer messages and that only the sum

matters, as opposed to the individual values. In that case the

system can combine several messages intended for a vertex

V into a single message containing their sum, reducing the

number of messages that must be transmitted and buffered.

Combiners are not enabled by default, because there is

no mechanical way to find a useful combining function that

is consistent with the semantics of the user’s Compute()
method. To enable this optimization the user subclasses

the Combiner class, overriding a virtual Combine() method.

There are no guarantees about which (if any) messages are

combined, the groupings presented to the combiner, or the

order of combining, so combiners should only be enabled for

commutative and associative operations.

For some algorithms, such as single-source shortest paths

(Section 5.2), we have observed more than a fourfold reduc-

tion in message traffic by using combiners.

3.3 Aggregators

Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value

to an aggregator in superstep S, the system combines those

values using a reduction operator, and the resulting value

is made available to all vertices in superstep S + 1. Pregel

includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum
aggregator applied to the out-degree of each vertex yields the
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The	  C++	  API	  

3 6 2 1 Superstep 0

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.
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fined Vertex class (see Figure 3). Its template arguments

define three value types, associated with vertices, edges,

and messages. Each vertex has an associated value of the

specified type. This uniformity may seem restrictive, but

users can manage it by using flexible types like protocol
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only per-vertex state that persists across supersteps. Lim-

iting the graph state managed by the framework to a single
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3.1 Message Passing

Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
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value is specified by the user as a template parameter of the
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virtual void Compute(MessageIterator* msgs) = 0;
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not be a neighbor of V . A vertex could learn the identifier

of a non-neighbor from a message received earlier, or ver-

tex identifiers could be known implicitly. For example, the

graph could be a clique, with well-known vertex identifiers

V1 through Vn, in which case there may be no need to even

keep explicit edges in the graph.

When the destination vertex of any message does not ex-

ist, we execute user-defined handlers. A handler could, for

example, create the missing vertex or remove the dangling

edge from its source vertex.

3.2 Combiners

Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some

cases with help from the user. For example, suppose that

Compute() receives integer messages and that only the sum

matters, as opposed to the individual values. In that case the

system can combine several messages intended for a vertex

V into a single message containing their sum, reducing the

number of messages that must be transmitted and buffered.

Combiners are not enabled by default, because there is

no mechanical way to find a useful combining function that

is consistent with the semantics of the user’s Compute()
method. To enable this optimization the user subclasses

the Combiner class, overriding a virtual Combine() method.

There are no guarantees about which (if any) messages are

combined, the groupings presented to the combiner, or the

order of combining, so combiners should only be enabled for

commutative and associative operations.

For some algorithms, such as single-source shortest paths

(Section 5.2), we have observed more than a fourfold reduc-

tion in message traffic by using combiners.

3.3 Aggregators

Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value

to an aggregator in superstep S, the system combines those

values using a reduction operator, and the resulting value

is made available to all vertices in superstep S + 1. Pregel

includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum
aggregator applied to the out-degree of each vertex yields the
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Message	  Passing	  

•  VerJces	  send	  messages	  to	  each	  other	  
– desJnaJon	  vertex	  
– message	  value	  

•  A	  vertex	  can	  iterate	  over	  all	  received	  
messages	  at	  S	  when	  compute()	  is	  called	  at	  S+1	  

•  A	  vertex	  can	  iterate	  over	  its	  outgoing	  edges,	  
send	  a	  message	  to	  the	  desJnaJons	  vertex	  of	  
each	  edge	  



Combiners	  

•  Reduce	  compute()	  overhead	  
•  Combine	  several	  messages	  intended	  for	  a	  
vertex	  V	  into	  a	  single	  message	  

•  For	  example,	  if	  V	  only	  needs	  sum	  of	  integer	  
messages	  it	  receives	  

•  Only	  work	  for	  commutaJve	  and	  associaJve	  
operaJons	  



Aggregators	  

•  A	  mechanism	  for	  global	  communicaJon,	  
monitoring,	  and	  data.	  

•  Each	  V	  can	  provide	  a	  value	  to	  an	  aggregator	  at	  
S,	  the	  sysmtem	  combines	  values	  and	  make	  it	  
public	  to	  all	  Vs	  at	  S+1	  

•  Examples:	  min,	  max,	  sum,	  other	  staJsJcs	  
•  Only	  work	  for	  commutaJve	  and	  associaJve	  
operaJons	  



Topology	  MutaJons	  

•  When	  compute()	  sends	  a	  request	  to	  add/
remove	  vertex/edge	  

•  To	  resolve	  conflicJng	  requests:	  
1)  parJal	  ordering	  
2)  handler	  	  

•  edge	  removal	  >	  vertex	  removal	  >	  vertex	  
addiJon	  >	  vertex	  addiJon	  >	  compute()	  

•  User-‐defined	  handlers	  for	  remaining	  conflicts	  

	  
	  

	  



Input	  and	  Output	  

•  Many	  possible	  file	  formats	  
–  text	  files	  
– set	  of	  verJces	  in	  a	  database	  
–  rows	  in	  Bigtable	  

•  Support	  for	  other	  formats	  by	  subclassing	  
Reader	  and	  Writer	  classes.	  



Basic	  Architecture	  

•  A	  master	  machine	  assigns	  graph	  parJJons	  to	  
worker	  machines	  

•  Master	  instructs	  each	  worker	  to	  perform	  a	  
superstep	  

•  When	  the	  worker	  is	  finished,	  it	  tells	  the	  
master	  how	  many	  verJces	  will	  be	  acJve	  for	  
next	  superstep	  

•  Repeat	  unJll	  no	  acJve	  vertex	  is	  remained	  



Fault	  Tolerance	  
•  CheckpoinJng	  procedure	  
•  At	  the	  beginning	  of	  a	  superstep,	  a	  checkpoint	  
is	  saved	  to	  persistent	  storage	  by	  each	  worker	  
–  log	  vetex/edges	  values,	  incoming	  messages	  

•  Master	  sends	  “ping”	  messages	  to	  workers	  
•  If	  no	  response	  afer	  an	  interval,	  then	  failed	  
•  Master	  reassigns	  parJJons	  to	  other	  workers	  
•  Repeat	  missing	  supersets	  afer	  checkpoints	  



Fault	  Tolerance	  
•  CheckpoinJng	  procedure	  
•  At	  the	  beginning	  of	  a	  superstep,	  a	  checkpoint	  
is	  saved	  to	  persistent	  storage	  by	  each	  worker	  
–  log	  vetex/edges	  values,	  incoming	  messages	  

•  Master	  sends	  “ping”	  messages	  to	  workers	  
•  If	  no	  response	  afer	  an	  interval,	  then	  failed	  
•  Master	  reassigns	  parJJons	  to	  other	  workers	  
•  Repeat	  missing	  supersets	  afer	  checkpoints	  
•  Confined	  recovery:	  log	  also	  outgoing	  messages,	  only	  
recomputes	  lost	  parJJons	  	  



ApplicaJons	  -‐	  PageRank	  
4.4 Master implementation

The master is primarily responsible for coordinating the

activities of workers. Each worker is assigned a unique iden-

tifier at the time of its registration. The master maintains a

list of all workers currently known to be alive, including the

worker’s unique identifier, its addressing information, and

which portion of the graph it has been assigned. The size of

the master’s data structures is proportional to the number

of partitions, not the number of vertices or edges, so a sin-

gle master can coordinate computation for even a very large

graph.

Most master operations, including input, output, compu-

tation, and saving and resuming from checkpoints, are ter-

minated at barriers: the master sends the same request to

every worker that was known to be alive at the time the op-

eration begins, and waits for a response from every worker.

If any worker fails, the master enters recovery mode as de-

scribed in section 4.2. If the barrier synchronization suc-

ceeds, the master proceeds to the next stage. In the case of

a computation barrier, for example, the master increments

the global superstep index and proceeds to the next super-

step.

The master also maintains statistics about the progress of

computation and the state of the graph, such as the total size

of the graph, a histogram of its distribution of out-degrees,

the number of active vertices, the timing and message traf-

fic of recent supersteps, and the values of all user-defined

aggregators. To enable user monitoring, the master runs an

HTTP server that displays this information.

4.5 Aggregators

An aggregator (Section 3.3) computes a single global value

by applying an aggregation function to a set of values that

the user supplies. Each worker maintains a collection of ag-

gregator instances, identified by a type name and instance

name. When a worker executes a superstep for any partition

of the graph, the worker combines all of the values supplied

to an aggregator instance into a single local value: an ag-

gregator that is partially reduced over all of the worker’s

vertices in the partition. At the end of the superstep work-

ers form a tree to reduce partially reduced aggregators into

global values and deliver them to the master. We use a

tree-based reduction—rather than pipelining with a chain

of workers—to parallelize the use of CPU during reduction.

The master sends the global values to all workers at the

beginning of the next superstep.

5. APPLICATIONS

This section presents four examples that are simplified

versions of algorithms developed by Pregel users to solve real

problems: Page Rank, Shortest Paths, Bipartite Matching,

and a Semi-Clustering algorithm.

5.1 PageRank

A Pregel implementation of a PageRank algorithm [7] is

shown in Figure 4. The PageRankVertex class inherits from

Vertex. Its vertex value type is double to store a tentative

PageRank, and its message type is double to carry PageR-

ank fractions, while the edge value type is void because

edges do not store information. We assume that the graph

is initialized so that in superstep 0, the value of each vertex

is 1 / NumVertices(). In each of the first 30 supersteps,

each vertex sends along each outgoing edge its tentative

class PageRankVertex
: public Vertex<double, void, double> {

public:
virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();

*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}
}

};

Figure 4: PageRank implemented in Pregel.

PageRank divided by the number of outgoing edges. Start-

ing from superstep 1, each vertex sums up the values arriving

on messages into sum and sets its own tentative PageRank

to 0.15/NumVertices() + 0.85× sum. After reaching super-

step 30, no further messages are sent and each vertex votes

to halt. In practice, a PageRank algorithm would run until

convergence was achieved, and aggregators would be useful

for detecting the convergence condition.

5.2 Shortest Paths

Shortest paths problems are among the best known prob-

lems in graph theory and arise in a wide variety of applica-

tions [10, 24], with several important variants. The single-
source shortest paths problem requires finding a shortest

path between a single source vertex and every other vertex

in the graph. The s-t shortest path problem requires find-

ing a single shortest path between given vertices s and t; it

has obvious practical applications like driving directions and

has received a great deal of attention. It is also relatively

easy—solutions in typical graphs like road networks visit a

tiny fraction of vertices, with Lumsdaine et al [31] observ-

ing visits to 80,000 vertices out of 32 million in one example.

A third variant, all-pairs shortest paths, is impractical for

large graphs because of its O(|V |2) storage requirements.

For simplicity and conciseness, we focus here on the single-

source variant that fits Pregel’s target of large-scale graphs

very well, but offers more interesting scaling data than the

s-t shortest path problem. An implementation is shown in

Figure 5.

In this algorithm, we assume the value associated with

each vertex is initialized to INF (a constant larger than any

feasible distance in the graph from the source vertex). In

each superstep, each vertex first receives, as messages from

its neighbors, updated potential minimum distances from

the source vertex. If the minimum of these updates is less

than the value currently associated with the vertex, then this

vertex updates its value and sends out potential updates to

its neighbors, consisting of the weight of each outgoing edge

added to the newly found minimum distance. In the first

superstep, only the source vertex will update its value (from

INF to zero) and send updates to its immediate neighbors.

These neighbors in turn will update their values and send

140



ApplicaJons	  –	  Shortest	  Paths	  
class ShortestPathVertex

: public Vertex<int, int, int> {
void Compute(MessageIterator* msgs) {

int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {

*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {

int mindist = INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
Output("combined_source", mindist);

}
};

Figure 6: Combiner that takes minimum of message
values.

messages, resulting in a wavefront of updates through the

graph. The algorithm terminates when no more updates

occur, after which the value associated with each vertex de-

notes the minimum distance from the source vertex to that

vertex. (The value INF denotes that the vertex cannot be

reached at all.) Termination is guaranteed if all edge weights

are non-negative.

Messages in this algorithm consist of potential shorter dis-

tances. Since the receiving vertex is ultimately only inter-

ested in the minimum, this algorithm is amenable to op-

timization using a combiner (Section 3.2). The combiner

shown in Figure 6 greatly reduces the amount of data sent

between workers, as well as the amount of data buffered

prior to executing the next superstep. While the code in

Figure 5 only computes distances, modifying it to compute

the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than

sequential counterparts such as Dijkstra or Bellman-Ford [5,

15, 17, 24], but it is able to solve the shortest paths problem

at a scale that is infeasible with any single-machine imple-

mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the ∆-stepping method [37], and have been

used as the basis for special-purpose parallel shortest paths

implementations [12, 32]. Such advanced algorithms can also

be expressed in the Pregel framework. The simplicity of the

implementation in Figure 5, however, together with the al-

ready acceptable performance (see Section 6), may appeal

to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching
The input to a bipartite matching algorithm consists of

two distinct sets of vertices with edges only between the

sets, and the output is a subset of edges with no common

endpoints. A maximal matching is one to which no addi-

tional edge can be added without sharing an endpoint. We

implemented a randomized maximal matching algorithm [1]

and a maximum-weight bipartite matching algorithm [4]; we

describe the former here.

In the Pregel implementation of this algorithm the ver-

tex value is a tuple of two values: a flag indicating which

set the vertex is in (L or R), and the name of its matched

vertex once known. The edge value has type void (edges

carry no information), and the messages are boolean. The

algorithm proceeds in cycles of four phases, where the phase

index is just the superstep index mod 4, using a three-way

handshake.

In phase 0 of a cycle, each left vertex not yet matched

sends a message to each of its neighbors to request a match,

and then unconditionally votes to halt. If it sent no messages

(because it is already matched, or has no outgoing edges),

or if all the message recipients are already matched, it will

never be reactivated. Otherwise, it will receive a response

in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched

randomly chooses one of the messages it receives, sends a

message granting that request, and sends messages to other

requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched

chooses one of the grants it receives and sends an acceptance

message. Left vertices that are already matched will never

execute this phase, since they will not have sent a message

in phase 0.

Finally, in phase 3, an unmatched right vertex receives at

most one acceptance message. It notes the matched node

and unconditionally votes to halt—it has nothing further to

do.

5.4 Semi-Clustering
Pregel has been used for several different versions of clus-

tering. One version, semi-clustering, arises in social graphs.

Vertices in a social graph typically represent people, and

edges represent connections between them. Edges may be

based on explicit actions (e.g., adding a friend in a social

networking site), or may be inferred from people’s behav-

ior (e.g., email conversations or co-publication). Edges may

have weights, to represent the interactions’ frequency or

strength.

A semi-cluster in a social graph is a group of people who

interact frequently with each other and less frequently with

others. What distinguishes it from ordinary clustering is

that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-

gorithm. Its input is a weighted, undirected graph (repre-

sented in Pregel by constructing each edge twice, once in

each direction) and its output is at most Cmax semi-clusters,

each containing at most Vmax vertices, where Cmax and Vmax

are user-specified parameters.

A semi-cluster c is assigned a score,

Sc =
Ic − fBBc

Vc(Vc − 1)/2
, (1)

where Ic is the sum of the weights of all internal edges, Bc

is the sum of the weights of all boundary edges (i.e., edges

connecting a vertex in the semi-cluster to one outside it),

Vc is the number of vertices in the semi-cluster, and fB , the

boundary edge score factor, is a user-specified parameter,

usually between 0 and 1. The score is normalized, i.e., di-
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class ShortestPathVertex
: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

Output("combined_source", mindist);
}

};

Figure 6: Combiner that takes minimum of message
values.
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notes the minimum distance from the source vertex to that

vertex. (The value INF denotes that the vertex cannot be

reached at all.) Termination is guaranteed if all edge weights

are non-negative.

Messages in this algorithm consist of potential shorter dis-

tances. Since the receiving vertex is ultimately only inter-

ested in the minimum, this algorithm is amenable to op-

timization using a combiner (Section 3.2). The combiner

shown in Figure 6 greatly reduces the amount of data sent

between workers, as well as the amount of data buffered

prior to executing the next superstep. While the code in

Figure 5 only computes distances, modifying it to compute

the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than

sequential counterparts such as Dijkstra or Bellman-Ford [5,

15, 17, 24], but it is able to solve the shortest paths problem

at a scale that is infeasible with any single-machine imple-

mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the ∆-stepping method [37], and have been

used as the basis for special-purpose parallel shortest paths

implementations [12, 32]. Such advanced algorithms can also

be expressed in the Pregel framework. The simplicity of the

implementation in Figure 5, however, together with the al-

ready acceptable performance (see Section 6), may appeal

to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching
The input to a bipartite matching algorithm consists of

two distinct sets of vertices with edges only between the

sets, and the output is a subset of edges with no common

endpoints. A maximal matching is one to which no addi-

tional edge can be added without sharing an endpoint. We

implemented a randomized maximal matching algorithm [1]

and a maximum-weight bipartite matching algorithm [4]; we

describe the former here.

In the Pregel implementation of this algorithm the ver-

tex value is a tuple of two values: a flag indicating which

set the vertex is in (L or R), and the name of its matched

vertex once known. The edge value has type void (edges

carry no information), and the messages are boolean. The

algorithm proceeds in cycles of four phases, where the phase

index is just the superstep index mod 4, using a three-way

handshake.

In phase 0 of a cycle, each left vertex not yet matched

sends a message to each of its neighbors to request a match,

and then unconditionally votes to halt. If it sent no messages

(because it is already matched, or has no outgoing edges),

or if all the message recipients are already matched, it will

never be reactivated. Otherwise, it will receive a response

in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched

randomly chooses one of the messages it receives, sends a

message granting that request, and sends messages to other

requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched

chooses one of the grants it receives and sends an acceptance

message. Left vertices that are already matched will never

execute this phase, since they will not have sent a message

in phase 0.

Finally, in phase 3, an unmatched right vertex receives at

most one acceptance message. It notes the matched node

and unconditionally votes to halt—it has nothing further to

do.

5.4 Semi-Clustering
Pregel has been used for several different versions of clus-

tering. One version, semi-clustering, arises in social graphs.

Vertices in a social graph typically represent people, and

edges represent connections between them. Edges may be

based on explicit actions (e.g., adding a friend in a social

networking site), or may be inferred from people’s behav-

ior (e.g., email conversations or co-publication). Edges may

have weights, to represent the interactions’ frequency or

strength.

A semi-cluster in a social graph is a group of people who

interact frequently with each other and less frequently with

others. What distinguishes it from ordinary clustering is

that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-

gorithm. Its input is a weighted, undirected graph (repre-

sented in Pregel by constructing each edge twice, once in

each direction) and its output is at most Cmax semi-clusters,

each containing at most Vmax vertices, where Cmax and Vmax

are user-specified parameters.

A semi-cluster c is assigned a score,

Sc =
Ic − fBBc

Vc(Vc − 1)/2
, (1)

where Ic is the sum of the weights of all internal edges, Bc

is the sum of the weights of all boundary edges (i.e., edges

connecting a vertex in the semi-cluster to one outside it),

Vc is the number of vertices in the semi-cluster, and fB , the

boundary edge score factor, is a user-specified parameter,

usually between 0 and 1. The score is normalized, i.e., di-
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Experiments	  

vided by the number of edges in a clique of size Vc, so that

large clusters do not receive artificially high scores.

Each vertex V maintains a list containing at most Cmax

semi-clusters, sorted by score. In superstep 0 V enters itself

in that list as a semi-cluster of size 1 and score 1, and pub-

lishes itself to all of its neighbors. In subsequent supersteps:

• Vertex V iterates over the semi-clusters c1,...,ck sent

to it on the previous superstep. If a semi-cluster c does

not already contain V , and Vc < Mmax, then V is added

to c to form c�.

• The semi-clusters c1, ..., ck, c�1, ..., c
�
k are sorted by their

scores, and the best ones are sent to V ’s neighbors.

• Vertex V updates its list of semi-clusters with the semi-

clusters from c1, ..., ck, c�1, ..., c
�
k that contain V .

The algorithm terminates either when the semi-clusters

stop changing or (to improve performance) when the number

of supersteps reaches a user-specified limit. At that point

the list of best semi-cluster candidates for each vertex may

be aggregated into a global list of best semi-clusters.

6. EXPERIMENTS
We conducted various experiments with the single-source

shortest paths (SSSP) implementation of Section 5.2 on a

cluster of 300 multicore commodity PCs. We report run-

times for binary trees (to study scaling properties) and log-

normal random graphs (to study the performance in a more

realistic setting) using various graph sizes with the weights

of all edges implicitly set to 1.

The time for initializing the cluster, generating the test

graphs in-memory, and verifying results is not included in

the measurements. Since all experiments could run in a

relatively short time, failure probability was low, and check-

pointing was disabled.

As an indication of how Pregel scales with worker tasks,

Figure 7 shows shortest paths runtimes for a binary tree

with a billion vertices (and, thus, a billion minus one edges)

when the number of Pregel workers varies from 50 to 800.

The drop from 174 to 17.3 seconds using 16 times as many

workers represents a speedup of about 10.

To show how Pregel scales with graph size, Figure 8 pre-

sents shortest paths runtimes for binary trees varying in size

from a billion to 50 billion vertices, now using a fixed number
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Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines

5G 10G 15G 20G 25G 30G 35G 40G 45G 50G

100

200

300

400

500

600

700

800

Number of vertices

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Figure 8: SSSP—binary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines

of 800 worker tasks scheduled on 300 multicore machines.

Here the increase from 17.3 to 702 seconds demonstrates

that for graphs with a low average outdegree the runtime

increases linearly in the graph size.

Although the previous experiments give an indication of

how Pregel scales in workers and graph size, binary trees are

obviously not representative of graphs encountered in prac-

tice. Therefore, we also conducted experiments with random

graphs that use a log-normal distribution of outdegrees,

p(d) =
1√

2π σd
e−(ln d−µ)2/2σ2

(2)

with µ = 4 and σ = 1.3, for which the mean outdegree is

127.1. Such a distribution resembles many real-world large-

scale graphs, such as the web graph or social networks, where

most vertices have a relatively small degree but some outliers

are much larger—a hundred thousand or more. Figure 9

shows shortest paths runtimes for such graphs varying in

size from 10 million to a billion vertices (and thus over 127

billion edges), again with 800 worker tasks scheduled on 300

multicore machines. Running shortest paths for the largest

graph took a little over 10 minutes.

In all experiments the graph was partitioned among work-

ers using the default partitioning function based on a ran-

dom hash; a topology-aware partitioning function would give

better performance. Also, a näıve parallel shortest paths
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Figure 9: SSSP—log-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines
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vided by the number of edges in a clique of size Vc, so that

large clusters do not receive artificially high scores.

Each vertex V maintains a list containing at most Cmax

semi-clusters, sorted by score. In superstep 0 V enters itself

in that list as a semi-cluster of size 1 and score 1, and pub-

lishes itself to all of its neighbors. In subsequent supersteps:

• Vertex V iterates over the semi-clusters c1,...,ck sent

to it on the previous superstep. If a semi-cluster c does

not already contain V , and Vc < Mmax, then V is added

to c to form c�.

• The semi-clusters c1, ..., ck, c�1, ..., c
�
k are sorted by their

scores, and the best ones are sent to V ’s neighbors.

• Vertex V updates its list of semi-clusters with the semi-

clusters from c1, ..., ck, c�1, ..., c
�
k that contain V .

The algorithm terminates either when the semi-clusters

stop changing or (to improve performance) when the number

of supersteps reaches a user-specified limit. At that point

the list of best semi-cluster candidates for each vertex may

be aggregated into a global list of best semi-clusters.

6. EXPERIMENTS
We conducted various experiments with the single-source

shortest paths (SSSP) implementation of Section 5.2 on a

cluster of 300 multicore commodity PCs. We report run-

times for binary trees (to study scaling properties) and log-

normal random graphs (to study the performance in a more

realistic setting) using various graph sizes with the weights

of all edges implicitly set to 1.

The time for initializing the cluster, generating the test

graphs in-memory, and verifying results is not included in

the measurements. Since all experiments could run in a

relatively short time, failure probability was low, and check-

pointing was disabled.

As an indication of how Pregel scales with worker tasks,

Figure 7 shows shortest paths runtimes for a binary tree

with a billion vertices (and, thus, a billion minus one edges)

when the number of Pregel workers varies from 50 to 800.

The drop from 174 to 17.3 seconds using 16 times as many

workers represents a speedup of about 10.

To show how Pregel scales with graph size, Figure 8 pre-

sents shortest paths runtimes for binary trees varying in size

from a billion to 50 billion vertices, now using a fixed number
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Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines
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Here the increase from 17.3 to 702 seconds demonstrates

that for graphs with a low average outdegree the runtime

increases linearly in the graph size.

Although the previous experiments give an indication of

how Pregel scales in workers and graph size, binary trees are
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(2)

with µ = 4 and σ = 1.3, for which the mean outdegree is

127.1. Such a distribution resembles many real-world large-

scale graphs, such as the web graph or social networks, where

most vertices have a relatively small degree but some outliers

are much larger—a hundred thousand or more. Figure 9
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size from 10 million to a billion vertices (and thus over 127

billion edges), again with 800 worker tasks scheduled on 300

multicore machines. Running shortest paths for the largest

graph took a little over 10 minutes.
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dom hash; a topology-aware partitioning function would give

better performance. Also, a näıve parallel shortest paths
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Figure 9: SSSP—log-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
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vided by the number of edges in a clique of size Vc, so that

large clusters do not receive artificially high scores.

Each vertex V maintains a list containing at most Cmax

semi-clusters, sorted by score. In superstep 0 V enters itself

in that list as a semi-cluster of size 1 and score 1, and pub-

lishes itself to all of its neighbors. In subsequent supersteps:

• Vertex V iterates over the semi-clusters c1,...,ck sent

to it on the previous superstep. If a semi-cluster c does

not already contain V , and Vc < Mmax, then V is added

to c to form c�.

• The semi-clusters c1, ..., ck, c�1, ..., c
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k are sorted by their

scores, and the best ones are sent to V ’s neighbors.

• Vertex V updates its list of semi-clusters with the semi-
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k that contain V .

The algorithm terminates either when the semi-clusters

stop changing or (to improve performance) when the number

of supersteps reaches a user-specified limit. At that point

the list of best semi-cluster candidates for each vertex may

be aggregated into a global list of best semi-clusters.
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cluster of 300 multicore commodity PCs. We report run-
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normal random graphs (to study the performance in a more

realistic setting) using various graph sizes with the weights
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The time for initializing the cluster, generating the test

graphs in-memory, and verifying results is not included in

the measurements. Since all experiments could run in a

relatively short time, failure probability was low, and check-

pointing was disabled.

As an indication of how Pregel scales with worker tasks,
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with a billion vertices (and, thus, a billion minus one edges)
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Here the increase from 17.3 to 702 seconds demonstrates

that for graphs with a low average outdegree the runtime

increases linearly in the graph size.
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how Pregel scales in workers and graph size, binary trees are
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with µ = 4 and σ = 1.3, for which the mean outdegree is

127.1. Such a distribution resembles many real-world large-

scale graphs, such as the web graph or social networks, where

most vertices have a relatively small degree but some outliers

are much larger—a hundred thousand or more. Figure 9

shows shortest paths runtimes for such graphs varying in

size from 10 million to a billion vertices (and thus over 127

billion edges), again with 800 worker tasks scheduled on 300

multicore machines. Running shortest paths for the largest

graph took a little over 10 minutes.
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ers using the default partitioning function based on a ran-

dom hash; a topology-aware partitioning function would give

better performance. Also, a näıve parallel shortest paths
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Figure 9: SSSP—log-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
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Conclusion	  and	  Future	  Work	  

•  Pregel:	  a	  model	  suitable	  for	  large-‐scale	  graph	  
compuJng	  

•  High-‐quality,	  scalable	  and	  fault	  tolerant	  
•  Dozens	  of	  Pregel	  applicaJons	  have	  been	  
deployed	  

•  Spill	  some	  computaJon	  states	  to	  local	  disk	  
instead	  of	  RAM	  

•  Dynamic	  reparJJoning	  


