Pregel: A System for Large-Scale
Graph Processing

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I.
Horn, N. Leiser, G. Czajkowski

Google, Inc.

Presenter: Mahsa Yarmohammadi

Motivation

* Many computing problems use large graphs
— Web graphs
— Social networks
— Transportation routes
— Citation relationships between publications

e Efficient processing is a challenge

* Pregel: a vertex-centric approach to distribute
large graphs processing

Current Approaches

* No scalable general-purpose system for distributed
processing of large graphs

* Four options:

1) A custom distributed system for each new algorithm.
2) MapReduce. sub-optimal performance and usage.

3) Asingle-machine library such as BGL, LEDA, JSDL, etc.

4) An existing parallel graph system library i.e. Parallel
BGL or CGMgraph. No fault tolerance.

Pregel

* Pregel: scalable fault tolerance platform with
APl for arbitrary graph algorithms

* Pure message passing model
— Network transfers are only messages

— In MapReduce, network transfers are the entire
state of the graph

* Similar to MapReduce in sense that
— focusing on a local action
— processing each item independently
— composing the results of actions

Pregel

A sequence of iterations, called supersteps
Input: a directed graph
At each superstep:

— a user-defined function is ran for each vertex

— read messages sent to V in superstep S-1

— send messages to other vertices to receive at S+1
— modify the state of V and its outgoing edges

Output: a directed graph isomorphic to the
input, or with added/removed vertices/edges

Model of Computation

Vote to halt
/_\

() maie]

_/

Message received

Superstep O : every vertex is active
A vertex deactivates itself by voting to halt

A vertex is reactivated if it recieves an external
message

Algorithm terminates if all vertices are inactive

Example

Superstep 0
Superstep 1

Superstep 2

Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

The C++ API

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>
class Vertex {
public:
virtual void Compute(MessageIlterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message) ;
void VoteToHalt();

Message Passing

* Vertices send messages to each other
— destination vertex
— message value

e A vertex can iterate over all received
messages at S when compute() is called at S+1

* A vertex can iterate over its outgoing edges,
send a message to the destinations vertex of
each edge

Combiners

Reduce compute() overhead

Combine several messages intended for a
vertex V into a single message

For example, if V only needs sum of integer
messages it receives

Only work for commutative and associative
operations

Aggregators

A mechanism for global communication,
monitoring, and data.

Each V can provide a value to an aggregator at
S, the sysmtem combines values and make it
public to all Vs at S+1

Examples: min, max, sum, other statistics

Only work for commutative and associative
operations

Topology Mutations

When compute() sends a request to add/
remove vertex/edge

To resolve conflicting requests:

1) partial ordering
2) handler

edge removal > vertex removal > vertex
addition > vertex addition > compute()

User-defined handlers for remaining conflicts

Input and Output

 Many possible file formats
— text files
— set of vertices in a database
— rows in Bigtable

e Support for other formats by subclassing
Reader and Writer classes.

Basic Architecture

A master machine assigns graph partitions to
worker machines

Master instructs each worker to perform a
superstep

When the worker is finished, it tells the
master how many vertices will be active for
next superstep

Repeat untill no active vertex is remained

Fault Tolerance

Checkpointing procedure

At the beginning of a superstep, a checkpoint
is saved to persistent storage by each worker

— log vetex/edges values, incoming messages
Master sends “ping” messages to workers

If no response after an interval, then failed
Master reassigns partitions to other workers
Repeat missing supersets after checkpoints

Fault Tolerance

Checkpointing procedure

At the beginning of a superstep, a checkpoint
is saved to persistent storage by each worker

— log vetex/edges values, incoming messages
Master sends “ping” messages to workers

If no response after an interval, then failed
Master reassigns partitions to other workers

Repeat missing supersets after checkpoints

Confined recovery: log also outgoing messages, only
recomputes lost partitions

Applications - PageRank

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() >= 1) {
double sum = O;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

¥

if (superstep() < 30) {
const int64 n = GetOutEdgeIlterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt () ;

}

}
s

Applications — Shortest Paths

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute(Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !'msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())
SendMessageTo (iter.Target (),
mindist + iter.GetValue());
}
VoteToHalt () ;

class MinIntCombiner : public Combiner<int> {
virtual void Combine(Messagelterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
Output ("combined_source", mindist);
}
s

Experiments

180
160 -
140
120
100+
80
60 -
40 -
20 = g

Runtime (seconds)

100 200 300 400 500 600 700 800

Number of worker tasks

Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines

Experiments

800
700 -
600 -
500 -
400 -
300 -
200
100 -

Runtime (seconds)

5G 10G 15G 20G 25G 30G 35G 40G 45G 50G

Number of vertices

Figure 8: SSSP—Dbinary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines

Experiments

800
700 -
600 -
500 -
400 -
300 -
200 -
100 -

Runtime (seconds)

100M 200M 300M 400M 500M 600M 700M 800M 900M 1G

Number of vertices

Figure 9: SSSP—Ilog-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines

Conclusion and Future Work

Pregel: a model suitable for large-scale graph
computing

High-quality, scalable and fault tolerant

Dozens of Pregel applications have been
deployed

Spill some computation states to local disk
instead of RAM

Dynamic repartitioning

