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Outline 

•  Latent Dirichlet Allocation 

•  Distributed Inference for LDA 

•  Asynchronous Distributed Learning for 
Topic Models 
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Latent Dirichlet Allocation (LDA) 

•  State of the art topic modeling method 
•  Clusters the words into topics 

–  Information Retrieval 
– Data visualization 
– … 

•  Also has applications in  
–  Image Processing 
– Bioinformatics 
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LDA 

•  For each Document: 
 1. Randomly choose a distribution over topics.  
 2. For each word in the document  

a)  Randomly choose a topic from the distribution 
over topics in step #1. 

b)  Randomly choose a word from the corresponding 
distribution over the vocabulary. 
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LDA 
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LDA Parameter Estimation 

•  Gibbs Sampling 
•  Observed variables: wij 
•  Latent variables: 

– Zij 
– θkj and φwk  (marginalized out) 
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Distributed Inference Algorithms 

•  Approximate Distributed Inference (AD-
LDA)  

•  Hierarchical Distributed Inference (HD-
LDA) 
– Not to be confused with Hierarchical LDA 
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AD-LDA 

•  Run LDA on subsets of data on different 
processors + a synchronization step 

•  Note:         is not the result of separate 
LDA models running on separate data.  
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 HD-LDA 
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HD-LDA 

•  Hyper-parameter selection 
– Guided by prior experience with AD-LDA 
– Note:   

a and b were chosen such that  
c and d chosen such that  

– Critical in getting good results  
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Experiments 

•  Why would AD-LDA work? 
•  Toy example 3 words, 2 topics 
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Experiments (Cont.) 

•  Prediction power 

12 



Experiments (Cont.) 

•  Prediction power vs. iteration number and 
number of topics  
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Experiments (Cont.) 

•  IR application TREC’S AP and FR 
collections 
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Experiments (Cont.) 

•  Speedup experiment: 
– On one 16-processor machine: not reflecting 

the communication time 
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Asynchronous Methods 

•  Advantages 
– No global synchronization step is required 
– Extremely fault-tolerant  
– Heterogeneous machines can be used 
– New processors and data can arrive any time 

•  Empirically 
– Robust 
– Converging fast 
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Asynchronous methods (Cont.) 

•  Still 2 steps: 
– Gibbs sampling 
– Synchronization 

•  Gossip-based 
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Asynchronous methods (Cont.) 

•  One over Hierarchical Dirichlet Process 
(HDP) 

•  HDP 

When L goes to infinity 
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Parallel-HDP & Async-HDP 
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Parallel-HDP & Async-HDP (Cont.) 

•  New topics might be introduced while 
infering 

•  Bipartite matching across two topic sets 
might be required 

•  They don’t do it but it works! 
– They just combine the sets by topic ids 
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Experiments 

•  Async-LDA 
•  Prediction power 
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Experiments (Cont.) 

•  Async-LDA 
•  Speed analysis   
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Experiments (Cont.) 

•  Parallel-HDP & Async-HDP 
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Experiments (Cont.) 

•  Parallel-HDP & Async-HDP 
– The number of topics does stabilize after 

thousands of iterations 

– Topics are generated at a slightly faster rate 
for Async-HDP than for Parallel-HDP 
•  Because Async-HDP takes a less aggressive 

approach on pruning small topics since processors 
need to be careful when pruning topics locally.  
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Experiments (Cont.) 

•  3 Different experiments here 
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Conclusions 

•  Go Async-LDA! 
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