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Perceptron	  Algorithm	  

•  An	  algorithm	  for	  supervised	  classificaKon	  
•  Classify	  one	  input	  into	  one	  of	  several	  outputs	  
•  Example	  in	  POS	  tagging:	  

input:	  	  
	  “fruit	  flies	  fast”	  

possible	  outputs:	  
	  “NN	  NNS	  VB”	  
	  “NN	  VB	  RB”	  
	  “NN	  NNS	  JJ”	  
	  	  

	  



Perceptron	  Algorithm	  

•  Supervised:	  input-‐output	  training	  instances	  

•  For	  all	  training	  instances:	  
– Predict	  the	  best	  output	  (	  	  	  )	  
– Penalize	  features	  of	  	  
– Reward	  features	  of	  the	  truth	  (	  	  	  	  )	  

	  

ification we call iterative parameter mixing can be
shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et

Perceptron(T = {(xt,yt)}|T |
t=1)

1. w(0) = 0; k = 0
2. for n : 1..N
3. for t : 1..T
4. Let y� = arg maxy� w(k) · f(xt,y�)
5. if y� �= yt

6. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
7. k = k + 1
8. return w(k)

Figure 1: The perceptron algorithm.

al., 2005; Crammer et al., 2006), the recently intro-
duced confidence weighted learning (Dredze et al.,
2008) and coordinate descent algorithms (Duchi and
Singer, 2009).

3 Structured Perceptron

The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y� ∈ Yt, where Yt

is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
responding correct output yt and take weight away
from features for the incorrect output y�. For struc-
tured prediction, the inference step in line 4 is prob-
lem dependent, e.g., CKY for context-free parsing.

A training set T is separable with margin γ >
0 if there exists a vector u ∈ RM with �u� = 1
such that u · f(xt,yt) − u · f(xt,y�) ≥ γ, for all
(xt,yt) ∈ T , and for all y� ∈ Yt such that y� �= yt.
Furthermore, let R ≥ ||f(xt,yt)−f(xt,y�)||, for all
(xt,yt) ∈ T and y� ∈ Yt. A fundamental theorem

1The perceptron can be kernalized for non-linearity.
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– non-‐linear	  increasing	  complexity	  with	  sequence	  
length	  
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–  IteraKve	  Parameter	  Mixing	  

•  Evaluate	  on	  two	  problems:	  
– Named	  EnKty	  RecogniKon	  (NER)	  
– Dependency	  Parsing	  



Parameter	  Mixing	  

1)	  Divide	  training	  data	  	  	  	  	  	  into	  	  	  	  	  shards	  

2)	  Train	  perceptron	  on	  each	  shard	  in	  parallel	  

3)	  Final	  	  	  	  	  	  is	  a	  weighted	  mixture	  of	  perceptrons	  
	  

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,
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ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,
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of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-
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Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.
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ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
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block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]
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turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,
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margin γ, the perceptron algorithm trained through
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any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
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where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
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lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
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that we call this strategy parameter mixing as op-
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easy to see how this can be implemented on a cluster
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trains the individual models in parallel and the re-
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it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
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tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.
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where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
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{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
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f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,
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if T is separable, then each of its subsets is separa-
ble and converge via Theorem 1. What it does say
is that, independent of µ, the mixed weight vector
produced after convergence will not necessarily sep-
arate the entire data, even when T is separable.

4.2 Iterative Parameter Mixing
Consider a slight augmentation to the parameter
mixing strategy. Previously, each parallel percep-
tron was trained to convergence before the parame-
ter mixing step. Instead, shard the data as before, but
train a single epoch of the perceptron algorithm for
each shard (in parallel) and mix the model weights.
This mixed weight vector is then re-sent to each
shard and the perceptrons on those shards reset their
weights to the new mixed weights. Another single
epoch of training is then run (again in parallel over
the shards) and the process repeats. This iterative
parameter mixing algorithm is given in Figure 3.

Again, it is easy to see how this can be imple-
mented as map-reduce, where the map computes the
parameters for each shard for one epoch and the re-
duce mixes and re-sends them. This is analogous
to batch distributed gradient descent methods where
the gradient for each shard is computed in parallel in
the map step and the reduce step sums the gradients
and updates the weight vector. The disadvantage of
iterative parameter mixing, relative to simple param-
eter mixing, is that the amount of information sent
across the network will increase. Thus, if network
latency is a bottleneck, this can become problematic.
However, for many parallel computing frameworks,
including both multi-core computing as well as clus-
ter computing with high rates of connectivity, this is
less of an issue.
Theorem 3. Assume a training set T is separable
by margin γ. Let ki,n be the number of mistakes that
occurred on shard i during the nth epoch of train-
ing. For any N , when training the perceptron with
iterative parameter mixing (Figure 3),

N�

n=1

S�

i=1

µi,nki,n ≤
R2

γ2

Proof. Let w(i,n) to be the weight vector for the
ith shard after the nth epoch of the main loop and
let w([i,n]−k) be the weight vector that existed on
shard i in the nth epoch k errors before w(i,n). Let

PerceptronIterParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w = 0
3. for n : 1..N
4. w(i,n) = OneEpochPerceptron(Ti,w) †
5. w =

�
i µi,nw(i,n) ‡

6. return w

OneEpochPerceptron(T , w∗)
1. w(0) = w∗; k = 0
2. for t : 1..T
3. Let y� = arg maxy� w(k) · f(xt,y�)
4. if y� �= yt

5. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
6. k = k + 1
7. return w(k)

Figure 3: Distributed perceptron using an iterative param-
eter mixing strategy. † Each w(i,n) is computed in paral-
lel. ‡ µn = {µ1,n, . . . , µS,n}, ∀µi,n ∈ µn: µi,n ≥ 0 and
∀n:

�
i µi,n = 1.

w(avg,n) be the mixed vector from the weight vec-
tors returned after the nth epoch, i.e.,

w(avg,n) =
S�

i=1

µi,nw(i,n)

Following the analysis from Collins (2002) Theorem
1, by examining line 5 of OneEpochPerceptron in
Figure 3 and the fact that u separates the data by γ:

u · w(i,n) = u · w([i,n]−1)

+ u · (f(xt,yt)− f(xt,y�))
≥ u · w([i,n]−1) + γ

≥ u · w([i,n]−2) + 2γ

. . . ≥ u · w(avg,n−1) + ki,nγ (A1)

That is, u · w(i,n) is bounded below by the average
weight vector for the n-1st epoch plus the number
of mistakes made on shard i during the nth epoch
times the margin γ. Next, by OneEpochPerceptron
line 5, the definition of R, and w([i,n]−1)(f(xt,yt)−
f(xt,y�)) ≤ 0 when line 5 is called:

�w(i,n)�2 = �w([i,n]−1)�2

+�f(xt,yt)− f(xt,y�)�2

+ 2w([i,n]−1)(f(xt,yt)− f(xt,y�))
≤ �w([i,n]−1)�2 + R2

≤ �w([i,n]−2)�2 + 2R2

. . . ≤ �w(avg,n−1)�2 + ki,nR2 (A2)
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ification we call iterative parameter mixing can be
shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et

Perceptron(T = {(xt,yt)}|T |
t=1)

1. w(0) = 0; k = 0
2. for n : 1..N
3. for t : 1..T
4. Let y� = arg maxy� w(k) · f(xt,y�)
5. if y� �= yt

6. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
7. k = k + 1
8. return w(k)

Figure 1: The perceptron algorithm.

al., 2005; Crammer et al., 2006), the recently intro-
duced confidence weighted learning (Dredze et al.,
2008) and coordinate descent algorithms (Duchi and
Singer, 2009).

3 Structured Perceptron

The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y� ∈ Yt, where Yt

is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
responding correct output yt and take weight away
from features for the incorrect output y�. For struc-
tured prediction, the inference step in line 4 is prob-
lem dependent, e.g., CKY for context-free parsing.

A training set T is separable with margin γ >
0 if there exists a vector u ∈ RM with �u� = 1
such that u · f(xt,yt) − u · f(xt,y�) ≥ γ, for all
(xt,yt) ∈ T , and for all y� ∈ Yt such that y� �= yt.
Furthermore, let R ≥ ||f(xt,yt)−f(xt,y�)||, for all
(xt,yt) ∈ T and y� ∈ Yt. A fundamental theorem

1The perceptron can be kernalized for non-linearity.
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The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y� ∈ Yt, where Yt

is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
responding correct output yt and take weight away
from features for the incorrect output y�. For struc-
tured prediction, the inference step in line 4 is prob-
lem dependent, e.g., CKY for context-free parsing.

A training set T is separable with margin γ >
0 if there exists a vector u ∈ RM with �u� = 1
such that u · f(xt,yt) − u · f(xt,y�) ≥ γ, for all
(xt,yt) ∈ T , and for all y� ∈ Yt such that y� �= yt.
Furthermore, let R ≥ ||f(xt,yt)−f(xt,y�)||, for all
(xt,yt) ∈ T and y� ∈ Yt. A fundamental theorem
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ification we call iterative parameter mixing can be
shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et

Perceptron(T = {(xt,yt)}|T |
t=1)

1. w(0) = 0; k = 0
2. for n : 1..N
3. for t : 1..T
4. Let y� = arg maxy� w(k) · f(xt,y�)
5. if y� �= yt

6. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
7. k = k + 1
8. return w(k)

Figure 1: The perceptron algorithm.

al., 2005; Crammer et al., 2006), the recently intro-
duced confidence weighted learning (Dredze et al.,
2008) and coordinate descent algorithms (Duchi and
Singer, 2009).

3 Structured Perceptron

The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y� ∈ Yt, where Yt

is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
responding correct output yt and take weight away
from features for the incorrect output y�. For struc-
tured prediction, the inference step in line 4 is prob-
lem dependent, e.g., CKY for context-free parsing.

A training set T is separable with margin γ >
0 if there exists a vector u ∈ RM with �u� = 1
such that u · f(xt,yt) − u · f(xt,y�) ≥ γ, for all
(xt,yt) ∈ T , and for all y� ∈ Yt such that y� �= yt.
Furthermore, let R ≥ ||f(xt,yt)−f(xt,y�)||, for all
(xt,yt) ∈ T and y� ∈ Yt. A fundamental theorem

1The perceptron can be kernalized for non-linearity.

457

ification we call iterative parameter mixing can be
shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et

Perceptron(T = {(xt,yt)}|T |
t=1)

1. w(0) = 0; k = 0
2. for n : 1..N
3. for t : 1..T
4. Let y� = arg maxy� w(k) · f(xt,y�)
5. if y� �= yt

6. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
7. k = k + 1
8. return w(k)

Figure 1: The perceptron algorithm.

al., 2005; Crammer et al., 2006), the recently intro-
duced confidence weighted learning (Dredze et al.,
2008) and coordinate descent algorithms (Duchi and
Singer, 2009).

3 Structured Perceptron

The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y� ∈ Yt, where Yt

is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
responding correct output yt and take weight away
from features for the incorrect output y�. For struc-
tured prediction, the inference step in line 4 is prob-
lem dependent, e.g., CKY for context-free parsing.

A training set T is separable with margin γ >
0 if there exists a vector u ∈ RM with �u� = 1
such that u · f(xt,yt) − u · f(xt,y�) ≥ γ, for all
(xt,yt) ∈ T , and for all y� ∈ Yt such that y� �= yt.
Furthermore, let R ≥ ||f(xt,yt)−f(xt,y�)||, for all
(xt,yt) ∈ T and y� ∈ Yt. A fundamental theorem

1The perceptron can be kernalized for non-linearity.

457

ification we call iterative parameter mixing can be
shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et

Perceptron(T = {(xt,yt)}|T |
t=1)

1. w(0) = 0; k = 0
2. for n : 1..N
3. for t : 1..T
4. Let y� = arg maxy� w(k) · f(xt,y�)
5. if y� �= yt

6. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
7. k = k + 1
8. return w(k)

Figure 1: The perceptron algorithm.

al., 2005; Crammer et al., 2006), the recently intro-
duced confidence weighted learning (Dredze et al.,
2008) and coordinate descent algorithms (Duchi and
Singer, 2009).

3 Structured Perceptron

The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y� ∈ Yt, where Yt

is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
responding correct output yt and take weight away
from features for the incorrect output y�. For struc-
tured prediction, the inference step in line 4 is prob-
lem dependent, e.g., CKY for context-free parsing.

A training set T is separable with margin γ >
0 if there exists a vector u ∈ RM with �u� = 1
such that u · f(xt,yt) − u · f(xt,y�) ≥ γ, for all
(xt,yt) ∈ T , and for all y� ∈ Yt such that y� �= yt.
Furthermore, let R ≥ ||f(xt,yt)−f(xt,y�)||, for all
(xt,yt) ∈ T and y� ∈ Yt. A fundamental theorem

1The perceptron can be kernalized for non-linearity.

457



Separable	  Training	  Set	  

•  	  	  	  is	  separable	  with	  margin	  	  	  if	  there	  is	  	  	  	  (	  	  	  	  	  	  	  	  	  	  )	  

•  If	  	  	  	  	  	  is	  separable,	  then	  the	  perceptron	  
1)  will	  converge	  in	  a	  finite	  Kme	  
2)  will	  produce	  a	  separaKng	  	  

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,
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if T is separable, then each of its subsets is separa-
ble and converge via Theorem 1. What it does say
is that, independent of µ, the mixed weight vector
produced after convergence will not necessarily sep-
arate the entire data, even when T is separable.

4.2 Iterative Parameter Mixing
Consider a slight augmentation to the parameter
mixing strategy. Previously, each parallel percep-
tron was trained to convergence before the parame-
ter mixing step. Instead, shard the data as before, but
train a single epoch of the perceptron algorithm for
each shard (in parallel) and mix the model weights.
This mixed weight vector is then re-sent to each
shard and the perceptrons on those shards reset their
weights to the new mixed weights. Another single
epoch of training is then run (again in parallel over
the shards) and the process repeats. This iterative
parameter mixing algorithm is given in Figure 3.

Again, it is easy to see how this can be imple-
mented as map-reduce, where the map computes the
parameters for each shard for one epoch and the re-
duce mixes and re-sends them. This is analogous
to batch distributed gradient descent methods where
the gradient for each shard is computed in parallel in
the map step and the reduce step sums the gradients
and updates the weight vector. The disadvantage of
iterative parameter mixing, relative to simple param-
eter mixing, is that the amount of information sent
across the network will increase. Thus, if network
latency is a bottleneck, this can become problematic.
However, for many parallel computing frameworks,
including both multi-core computing as well as clus-
ter computing with high rates of connectivity, this is
less of an issue.
Theorem 3. Assume a training set T is separable
by margin γ. Let ki,n be the number of mistakes that
occurred on shard i during the nth epoch of train-
ing. For any N , when training the perceptron with
iterative parameter mixing (Figure 3),

N�

n=1

S�

i=1

µi,nki,n ≤
R2

γ2

Proof. Let w(i,n) to be the weight vector for the
ith shard after the nth epoch of the main loop and
let w([i,n]−k) be the weight vector that existed on
shard i in the nth epoch k errors before w(i,n). Let

PerceptronIterParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w = 0
3. for n : 1..N
4. w(i,n) = OneEpochPerceptron(Ti,w) †
5. w =

�
i µi,nw(i,n) ‡

6. return w

OneEpochPerceptron(T , w∗)
1. w(0) = w∗; k = 0
2. for t : 1..T
3. Let y� = arg maxy� w(k) · f(xt,y�)
4. if y� �= yt

5. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
6. k = k + 1
7. return w(k)

Figure 3: Distributed perceptron using an iterative param-
eter mixing strategy. † Each w(i,n) is computed in paral-
lel. ‡ µn = {µ1,n, . . . , µS,n}, ∀µi,n ∈ µn: µi,n ≥ 0 and
∀n:

�
i µi,n = 1.

w(avg,n) be the mixed vector from the weight vec-
tors returned after the nth epoch, i.e.,

w(avg,n) =
S�

i=1

µi,nw(i,n)

Following the analysis from Collins (2002) Theorem
1, by examining line 5 of OneEpochPerceptron in
Figure 3 and the fact that u separates the data by γ:

u · w(i,n) = u · w([i,n]−1)

+ u · (f(xt,yt)− f(xt,y�))
≥ u · w([i,n]−1) + γ

≥ u · w([i,n]−2) + 2γ

. . . ≥ u · w(avg,n−1) + ki,nγ (A1)

That is, u · w(i,n) is bounded below by the average
weight vector for the n-1st epoch plus the number
of mistakes made on shard i during the nth epoch
times the margin γ. Next, by OneEpochPerceptron
line 5, the definition of R, and w([i,n]−1)(f(xt,yt)−
f(xt,y�)) ≤ 0 when line 5 is called:

�w(i,n)�2 = �w([i,n]−1)�2

+�f(xt,yt)− f(xt,y�)�2

+ 2w([i,n]−1)(f(xt,yt)− f(xt,y�))
≤ �w([i,n]−1)�2 + R2

≤ �w([i,n]−2)�2 + 2R2

. . . ≤ �w(avg,n−1)�2 + ki,nR2 (A2)
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shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et

Perceptron(T = {(xt,yt)}|T |
t=1)

1. w(0) = 0; k = 0
2. for n : 1..N
3. for t : 1..T
4. Let y� = arg maxy� w(k) · f(xt,y�)
5. if y� �= yt

6. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
7. k = k + 1
8. return w(k)

Figure 1: The perceptron algorithm.

al., 2005; Crammer et al., 2006), the recently intro-
duced confidence weighted learning (Dredze et al.,
2008) and coordinate descent algorithms (Duchi and
Singer, 2009).

3 Structured Perceptron

The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y� ∈ Yt, where Yt

is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
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ification we call iterative parameter mixing can be
shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et
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of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,
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the averaged perceptron (see previous section). It is
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parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
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serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
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and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,

458

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,

458

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,

458



IteraKve	  Parameter	  Mixing	  

1)	  Divide	  training	  data	  	  	  	  	  	  into	  	  	  	  	  shards	  

2)	  Train	  single-‐epoch	  perceptron	  on	  each	  shard	  

3)	  Mix	  the	  weights	  

4)	  Re-‐send	  the	  new	  weight	  	  	  	  	  	  to	  each	  shard,	  	  
	  	  	  	  go	  to	  2	  	  
	  

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,

458

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,

458

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing
Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

�
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

�
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,

458

mapper	  

reducer	  



IteraKve	  Parameter	  Mixing	  
if T is separable, then each of its subsets is separa-
ble and converge via Theorem 1. What it does say
is that, independent of µ, the mixed weight vector
produced after convergence will not necessarily sep-
arate the entire data, even when T is separable.

4.2 Iterative Parameter Mixing
Consider a slight augmentation to the parameter
mixing strategy. Previously, each parallel percep-
tron was trained to convergence before the parame-
ter mixing step. Instead, shard the data as before, but
train a single epoch of the perceptron algorithm for
each shard (in parallel) and mix the model weights.
This mixed weight vector is then re-sent to each
shard and the perceptrons on those shards reset their
weights to the new mixed weights. Another single
epoch of training is then run (again in parallel over
the shards) and the process repeats. This iterative
parameter mixing algorithm is given in Figure 3.

Again, it is easy to see how this can be imple-
mented as map-reduce, where the map computes the
parameters for each shard for one epoch and the re-
duce mixes and re-sends them. This is analogous
to batch distributed gradient descent methods where
the gradient for each shard is computed in parallel in
the map step and the reduce step sums the gradients
and updates the weight vector. The disadvantage of
iterative parameter mixing, relative to simple param-
eter mixing, is that the amount of information sent
across the network will increase. Thus, if network
latency is a bottleneck, this can become problematic.
However, for many parallel computing frameworks,
including both multi-core computing as well as clus-
ter computing with high rates of connectivity, this is
less of an issue.
Theorem 3. Assume a training set T is separable
by margin γ. Let ki,n be the number of mistakes that
occurred on shard i during the nth epoch of train-
ing. For any N , when training the perceptron with
iterative parameter mixing (Figure 3),

N�

n=1

S�

i=1

µi,nki,n ≤
R2

γ2

Proof. Let w(i,n) to be the weight vector for the
ith shard after the nth epoch of the main loop and
let w([i,n]−k) be the weight vector that existed on
shard i in the nth epoch k errors before w(i,n). Let

PerceptronIterParamMix(T = {(xt,yt)}|T |
t=1)

1. Shard T into S pieces T = {T1, . . . , TS}
2. w = 0
3. for n : 1..N
4. w(i,n) = OneEpochPerceptron(Ti,w) †
5. w =

�
i µi,nw(i,n) ‡

6. return w

OneEpochPerceptron(T , w∗)
1. w(0) = w∗; k = 0
2. for t : 1..T
3. Let y� = arg maxy� w(k) · f(xt,y�)
4. if y� �= yt

5. w(k+1) = w(k) + f(xt,yt)− f(xt,y�)
6. k = k + 1
7. return w(k)

Figure 3: Distributed perceptron using an iterative param-
eter mixing strategy. † Each w(i,n) is computed in paral-
lel. ‡ µn = {µ1,n, . . . , µS,n}, ∀µi,n ∈ µn: µi,n ≥ 0 and
∀n:

�
i µi,n = 1.

w(avg,n) be the mixed vector from the weight vec-
tors returned after the nth epoch, i.e.,

w(avg,n) =
S�

i=1

µi,nw(i,n)

Following the analysis from Collins (2002) Theorem
1, by examining line 5 of OneEpochPerceptron in
Figure 3 and the fact that u separates the data by γ:

u · w(i,n) = u · w([i,n]−1)

+ u · (f(xt,yt)− f(xt,y�))
≥ u · w([i,n]−1) + γ

≥ u · w([i,n]−2) + 2γ

. . . ≥ u · w(avg,n−1) + ki,nγ (A1)

That is, u · w(i,n) is bounded below by the average
weight vector for the n-1st epoch plus the number
of mistakes made on shard i during the nth epoch
times the margin γ. Next, by OneEpochPerceptron
line 5, the definition of R, and w([i,n]−1)(f(xt,yt)−
f(xt,y�)) ≤ 0 when line 5 is called:

�w(i,n)�2 = �w([i,n]−1)�2

+�f(xt,yt)− f(xt,y�)�2

+ 2w([i,n]−1)(f(xt,yt)− f(xt,y�))
≤ �w([i,n]−1)�2 + R2

≤ �w([i,n]−2)�2 + 2R2

. . . ≤ �w(avg,n−1)�2 + ki,nR2 (A2)
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•  Advantage:	  
– opKmal:	  returns	  a	  separa2ng	  weight	  vector	  
– significantly	  reduces	  training	  Kme	  

•  Disadvantage:	  
–  increasing	  network	  usage	  



Experiments	  

•  Standard/Averaged	  perceptron	  in	  4	  systems:	  
– Serial	  –	  All	  Data	  
– Serial	  –	  Sub	  Sampling	  
– Parallel	  (Parameter	  Mixing)	  
– Parallel	  (IteraKve	  Parameter	  Mixing)	  
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•  Standard/Averaged	  perceptron	  in	  4	  systems:	  
– Serial	  –	  All	  Data	  
– Serial	  –	  Sub	  Sampling	  
– Parallel	  (PM)	  
– Parallel	  (IPM)	  

•  Two	  Problems:	  
– NER	  –	  CoNLL	  2033	  shared	  task	  
– Dependency	  parsing	  –	  Prague	  Dependency	  Treebank	  
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Reg. Perceptron Avg. Perceptron
F-measure F-measure

Serial (All Data) 85.8 88.2
Serial (Sub Sampling) 75.3 76.6

Parallel (Parameter Mix) 81.5 81.6
Parallel (Iterative Parameter Mix) 87.9 88.1

Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.
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level as the averaged perceptron.
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gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
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ing (µi,n=ki,n/kn) – each with two shard sizes –
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analysis in Section 4.3, which, at least for the case
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•  Training	  on	  a	  single	  shard	  performs	  worse	  than	  all	  data	  
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Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.
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•  PM	  performs	  be`er	  than	  single-‐shard	  but	  worse	  than	  
all	  data	  
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Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.

462

•  IPM	  performs	  as	  good	  as/be`er	  than	  all	  data	  
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Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.
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•  PM	  and	  IPM	  return	  be`er	  classifiers	  much	  quicker	  than	  
all	  data	  
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•  The	  same	  pa`erns	  hold	  for	  averaged	  perceptron	  
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Serial (All Data) 85.8 88.2
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Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.
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Serial (All Data) 85.8 88.2
Serial (Sub Sampling) 75.3 76.6
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Parallel (Iterative Parameter Mix) 87.9 88.1

Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.

462



	  Dep.	  Parsing	  –	  Standard	  perceptron	  

Wall Clock

0.74

0.76

0.78

0.8

0.82

0.84
U

n
la

b
e

le
d

 A
tt

a
c
h

m
e

n
t 

S
c
o

re

Perceptron -- Serial (All Data)

Perceptron -- Serial (Sub Sampling)

Perceptron -- Parallel (Iterative Parameter Mix)

Wall Clock

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

U
n

la
b

e
le

d
 A

tt
a

c
h

m
e

n
t 

S
c
o

re

Averaged Perceptron -- Serial (All Data)

Averaged Perceptron -- Serial (Sub Sampling)

Averaged Perceptron -- (Iterative Parameter Mix) 

Reg. Perceptron Avg. Perceptron
Unlabeled Attachment Score Unlabeled Attachment Score

Serial (All Data) 81.3 84.7
Serial (Sub Sampling) 77.2 80.1
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Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.
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size and parameter mixing strategies.
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Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions
In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.

Acknowledgements: We thank Mehryar Mohri, Fer-
nando Periera, Mark Dredze and the three anonymous re-
views for their helpful comments on this work.
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Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.
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Figure 6: Training errors per epoch for different shard
size and parameter mixing strategies.

form mixture case. Theorem 3 implies:
N�

n=1

S�

i=1

ki,n

S
≤ R2

γ2
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i=1

ki,n ≤ S × R2
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Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions
In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.

Acknowledgements: We thank Mehryar Mohri, Fer-
nando Periera, Mark Dredze and the three anonymous re-
views for their helpful comments on this work.
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Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.
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Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions
In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.
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Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.
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Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.
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Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.
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Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions
In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.
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Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.
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Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions
In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.
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Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.
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Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions
In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.
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Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.
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Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions
In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.
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•  Trade-‐off	  between	  slower	  convergence	  and	  quicker	  
ephocs	  



Conclusions	  	  

•  IteraKve	  parameter	  mixing	  is	  
– guaranteed	  to	  separate	  the	  data	  
– significantly	  reduces	  training	  Kme	  

•  Trade-‐off	  between	  distribuKng	  computaKon	  
and	  slower	  convergence	  relaKve	  to	  #	  shards	  

•  TheoreKcal	  proofs	  of	  convergence	  in	  the	  
paper	  


