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Gradient Boosted Distributed Tree(GBDT)

what is it?

Boosting

ensemble technique in which learners are learned sequentially with
early learners fitting a simple model to the data and analyzing the data
for errors - and later models focus on these errors trying to get them
right. In the end all learners are given weights and combined to create

an overall predictor.

https://www.youtube.com/watch?v=sRktKszFmSk, Ensembles (3): Gradient Boosting, Alexander Ihler
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Gradient Boosted Distributed Tree(GBDT)
what is it”
* |earn aregression predictor

e compute the error residual
* J|earn to predict the residual

learn a simple predictor Then try to correct its errors
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Gradient Boosted Distributed Tree(GBDT)
what Is it

* |earn aregression predictor
e compute the error residual
* J|earn to predict the residual

combining gives a can try to correct its
better predictor errors also and repeat
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Gradient Boosted Distributed Tree(GBDT)
what Is it

* |earn aregression predictor
e compute the error residual
* J|earn to predict the residual

Data & prediction function

https://www.youtube.com/watch?v=sRktKszFmSk, Ensembles (3): Gradient Boosting, Alexander Ihler
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Distributing the GBDT Algorithm
The Goal

But WHY?

There's a need to incorporate increasing numbers of features and
instances in training data and because existing methods require all

training data to be in physical memory



Distributing the GBDT Algorithm
The Goal

HOW?

By improving the training time of individual trees and not on

parallelizing the actual boosting phase
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MapReduce MP]



Distributing the GBDT Algorithm

The Goal
HOW to Partition the training data”

CARAGEA,D.@ | A framework for learning from distributed data using sufficient statistics and its application to learning decision
trees,2004



Distributing the GBDT Algorithm

The Goal
HOW to Partition the training data”
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Figure 4. Distributed Statistics Gathering: (Left) Serial. (Right) Parallel.

CARAGEA,D.@ | A framework for learning from distributed data using sufficient statistics and its application to learning decision
trees,2004



Distributing the GBDT Algorithm
MapReduce

Algorithm 1 Aggregating candidate splits

map(key, value):

F < set of features

sample <= split(value,delim)

for f in F' do
key = (f, sample[f])
value = (sample[residual], sample[weight])
emit(key, value)

end for

reduce(key, values):

residual_sum < 0

weight_sum <= 0

for v in values do
residual sum <= residual sum + v.residual
weight_sum <= weight_sum + v.weight

end for

emit(key, (residual_sum,weight_sum))

Stochastic Gradient Boosted Distributed Decision Trees, Yahoo! labs, 2009



Distributing the GBDT Algorithm
MapReduce

Algorithm 2 Partitioning a Node n

map(key,value):
sample <= split(value,delim)
if sample[n.feature] < n.splitpoint then

residual = sample[residual |+ n.left_response
else

residual = sample[residual]+ n.right_response
end if
emit(key, value)

Stochastic Gradient Boosted Distributed Decision Trees, Yahoo! labs, 2009



Distributing the GBDT Algorithm
MapReduce

Algorithm 2 Partitioning a Node n
map(key,value):

sample <= split(value,delim)
if sample[n.feature] < n.splitpoint then /—\
residual = sample[residual |+ n.left_response
else
residual = sample[residual]+ n.right_response
end if
emit(key, value)

additional communication cost caused
by writing out multiple files when 0

splitting a node—-> high system overhead

Stochastic Gradient Boosted Distributed Decision Trees, Yahoo! labs, 2009



Message Passing Interface (MPI)
What is it”

a parallel MPI program is launched as sperate processes (tasks), each
with their own address space -> it requires partitioning data across

tasks

a task accesses the data of another task through a transaction called
“message passing” in which a copy of the data (message) is transferred

(passed) from one task to another

Stochastic Gradient Boosted Distributed Decision Trees, Yahoo! labs, 2009



Message Passing Interface (MPI)

Process

/

S;,; = argmax; {gain(c:,;)}

Stochastic Gradient Boosted Distributed Decision Trees, Yahoo! labs, 2009



Message Passing Interface (MPI)

Process

/

S;,; = argmax; {gain(c:,;)}

each machine is given a subset of the feature space and can compute

the best local split for its j's and i's and sends her result to her friends

when everybody knows the best cut

Stochastic Gradient Boosted Distributed Decision Trees, Yahoo! labs, 2009



Experiment Results
MapReduce
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Stochastic Gradient Boosted Distributed Decision Trees, Yahoo! labs, 2009
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Experiment Results
MapReduce

communication overhead. not as good even in comparison to non parallel implementation
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Experiment Results
MP|
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Experiment Results
MP|

for 100k the overhead was too high to be useful
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Experiment Results
MP|

training time was reduced in 0.5 after using 2 machines and continue to improve until 5
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Experiment Results
MP|

an improvement from 70 sec to 9 sec per tree
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Intake

MapReduce

limited amount of code :)
high scalability :)
communication cost :(
MPI

high scalability :)
communication cost :)

overall -good :)



Matlab for GBDT

code

* Data set X, Y
mu = mean (Y) ; ¥ Often start with constant "mean” predictor
dY = ¥ - mu; ) subtract this prediction away
For k=1:Nboost,
Learner(k) = Train_ Regressor (X,dY);

alpha(k) = 1; % alpha: a “"learning rate” or “step size”
* smaller alphas need to use more classifiers, but tend to
' predict better given enough of them

compute the residual given our new prediction
dY = dY - alpha(k) * predict(Learner{k), X)
end ;

' Test data Xtest
[Ntest ,D] = size(Xtest);

predict = zeros (Ntest,bl) ; ¥ Allocate space

For k=1:Nboost, ¥ Predict with each learner
predict = predict + alpha (k) *predict (Learner{k}, Xtest);

end;

https://www.youtube.com/watch?v=sRktKszFmSk, Ensembles (3): Gradient Boosting, Alexander Ihler
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