Evaluating MapReduce for Multi-core
and Multiprocessor Systems

Shiran Dudy
20/04/14

Outline

* |ntroduction

* Overview of MapReduce

o Shared-memory implementation
* Evaluation methodology

e Evaluation results

» Conclusions

* Discussion with regard to additional work

Overview of MapReduce
Programming Model

class MAPPER
method MAP(docid a, doc d)
for all term ¢ € doc d do
EMIT(term ¢, count 1)

class REDUCER
method REDUCE(term ¢, counts [cy, ca, .. .|)
sum «— 0
for all count ¢ € counts [c;,ca,...| do
sSum «— sum +c¢

EMIT(term ¢, count sum)

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010

Overview of MapReduce
Programming Model

class MAPPER
method INITIALIZE
H < new ASSOCIATIVEARRAY
method MAP(docid a,doc d)
for all term ¢ € doc d do
H{t} — H{t} +1
method CLOSE
for all term t € H do
EMIT(term ¢, count H{t})

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010

Overview of MapReduce
Runtime System

Big Data

http://dme.rwth-aachen.de/de/research/projects/mapreduce

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce
Runtime System

Big Data

http://dme.rwth-aachen.de/de/research/projects/mapreduce

modify the size of the unit

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce
Runtime System

Big Data

http://dme .rwth-aachen.de/ de/research/projects/mal;,ﬂ
o

modify the number of nodes

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce
Runtime System

REDUCE

Big Data

http://dme.rwth-aachen.de/de/research/projects/mapreduce

assign to itself the next task while processing the current

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce
Runtime System

Coping with failures

e re assign a Map/Reduce when detected a
node has failed

* re execute the specific Map/Reduce tasks
when there’'s a memory corruption

 dynamically adjust the number of nodes it
uses due to a hostile environment (heat,
oower failure)

Overview of MapReduce
Runtime System

How big Is the overhead?

The Shared Memory Implementation
The Phoenix System

AP

Runtime
Basic operation and control flow

Buffer management
Fault recovery

Concurrency and locality management

The Shared Memory Implementation
The Phoenix System

API

Runtime
Basic operation and control flow

Buffer management
Fault recovery

Concurrency and locality management

The Shared Memory Implementation
The Phoenix System - AP

Function Description R/O
Functions Provided by Runtime
int phoenix.scheduler (scheduler.args.t * args) R
Initializes the runtime system. The scheduler args.t struct provides the needed function & data pointers
void emit._intermediate(void +key, void »val, int key.size) 0]
Used in Map to emit an intermediate output <key, value> pair. Required if the Reduce is defined
void emit (void skey, void =val) O

Used in Reduce to emit a final output pair

Functions Defined by User

int (*splitter.t) (void *, int, map.args.t =) R

Splits the input data across Map tasks. The arguments are the input data pointer, the unit size for each task, and the
input buffer pointer for each Map task

void (*xmap-t) (map.args_tx) R
The Map function. Each Map task executes this function on its input
int (*partition._t) (int, void *, int) 0O

Partitions intermediate pair for Reduce tasks based on their keys. The arguments are the number of Reduce tasks, a
pointer to the keys, and a the size of the key. Phoenix provides a default partitioning function based on key hashing
void (xreduce.t) (void %, void #x, int) 0O
The Reduce function. Each reduce task executes this on its input. The arguments are a pointer to a key, a pointer to the
associated values, and value count. If not specified, Phoenix uses a default identity function
int (xkey.cmp.t) (const void *, const voidx) R
Function that compares two keys

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - AP

Function Description R/O

Functions Provided by Runtime
int phoenix.scheduler (scheduler.args.t * args)

Initializes the runtime system. The scheduler args.t struct provides the needed function & data pointers
g o 4 3 e (VOLU eV, V O v - . REY .- ?
Used in Map to emit an intermediate output <key, value> pair. Required if the Reduce is defined
void emit (void s*key, void =val) 0

Used in Reduce to emit a final output pair

Functions Defined by User

int (*splitter.t) (void *, int, map.args.t =) R

Splits the input data across Map tasks. The arguments are the input data pointer, the unit size for each task, and the
input buffer pointer for each Map task

void (*map_t) (map_args_tx) R
The Map function. Each Map task executes this function on its input
int (*partition._t) (int, void %, int) 0O

Partitions intermediate pair for Reduce tasks based on their keys. The arguments are the number of Reduce tasks, a
pointer to the keys, and a the size of the key. Phoenix provides a default partitioning function based on key hashing
void (xreduce.t) (void x, void =x, int) 0O
The Reduce function. Each reduce task executes this on its input. The arguments are a pointer to a key, a pointer to the
associated values, and value count. If not specified, Phoenix uses a default identity function
int (xkey.cmp.t) (const void x, const voidx) R
Function that compares two keys

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - AP

Field Description
Basic Fields

Input_data Input data pointer; passed to the Splitter by the runtime
Data.size Input dataset size
Output.data Output data pointer; buffer space allocated by user
Splitter Pointer to Splitter function
Map Pointer to Map function
Reduce Pointer to Reduce function
Partition Pointer to Partition function
Key._cmp Pointer to key compare function

Optional Fields for Performance Tuning
Unit_size Pairs processed per Map/Reduce task
Ll_cache_size L1 data cache size in bytes
Num.Map.workers Maximum number of threads (workers) for Map tasks

Num_Reduce_workers | Maximum number of threads (workers) for Reduce tasks
Num Merge.workers Maximum number of threads (workers) for Merge tasks
Num_procs Maximum number of processors cores used

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System

AP

Runtime
Basic operation and control flow

Buffer management
Fault recovery

Concurrency and locality management

The Shared Memory Implementation

The Phoenix System - The Runtime
Basic Operation and Control Flow

Map Stage

Function Description

int phoenix.scheduler (scheduler:
Initializes the runtime system. The schedt
void emit_intermediate (void ~key;
Used in Map to emit an intermediate output

void emit (void =*key, wvoid =*val)
Used in Reduce to emit a final output pair

int (#splitter.t) (void *, int, ma
Splits the input data across Map tasks. The
input buffer pointer for each Map task

void (*xmap_t) (map_args_tx)
The Map function. Each Map task executes
int (xpartition.t) (int, void =*, i
Partitions intermediate pair for Reduce tash
pointer to the keys, and a the size of the key. Ph¢

Input

— ! Split {

Worker 1

, l‘ibﬁf Map

Worker N

“11 » Map

»

>

P 1> Map »’\ Partition

Partition

Partition

.,_ e ||’1f Reduce b i

Reduce Stage
Worker 1

/ 3 ‘ =) M_or?a !

Sl 1 e Reduce - IR/

Worker M

void (xreduce.t) (void %, void =xx,

The Reduce function. Each reduce task executes this on its input. The arguments are a pointer to a key, a pointer to the

int)

associated values, and value count. If not specified, Phoenix uses a default identity function
int (xkey._cmp_t) (const void *, const voidx)

Function that compares two keys

0

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - The Runtime

Basic Operation and Control Flow

. Function Description

int phoenix.scheduler (scheduler_-
Initializes the runtime system. The schedt
void emit_intermediate (void «key,'
Used in Map to emit an intermediate output

void emit (void =*key, wvoid =*val)
Used in Reduce to emit a final output pair

int (#splitter.t) (void *, int, ma
Splits the input data across Map tasks. The
input buffer pointer for each Map task

Map Stage
Worker 1

I Map p{ porton |

_..-wlﬂb Map (Parttion £\

Input

‘llb Map | Parttion **

Reduce Stage

Worker 1

») Merge |

Reduce | 7

S 1> Reauce [I

Merge

‘ Output

\ Function that compares two keys

The Reduce function. Each reduce task executes this on its input. The arguments are a pointer to a key, a pointer to the
associated values, and value count. If not specified, Phoenix uses a default identity function
int (xkey._cmp_t) (const void *, const voidx)

void (*map.t) (map.args_tx) “HIl» Map - Parttion I N ll > Reduce P ll
The Map function. Each Map task executes N e

int (xpartition_t) (int, void =*, i
Partitions intermediate pair for Reduce tash Worker N Worker M

pointer to the keys, and a the size of the key. Ph¢

void (xreduce.t) (void =, wvoid =x, int) 0O

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation

The Phoenix System - The Runtime
Basic Operation and Control Flow

. Function Description

int phoenix.scheduler (scheduler.‘
Initializes the runtime system. The schedt

void emit_intermediate (void «key,'
Used in Map to emit an intermediate output

void emit (void =*key, wvoid =*val)
Used in Reduce to emit a final output pair

int (#splitter.t) (void *, int, ma
Splits the input data across Map tasks. The
input buffer pointer for each Map task

void (*xmap_t) (map_args_tx)

int (xpartition_t) (int, void =*, i
Partitions intermediate pair for Reduce tash
pointer to the keys, and a the size of the key. Phe

Input

> Split |

NS

[s

Map Stage

Reduce Stage

Worker 1 Worker 1

/ ll" Reduce ’ l'

= >< _)gfm,

7 10w Resuce o= 11

s w
- \l- -
.. w

4||~> Map | Partiion - A | Il » Reduce » I

, ’_’f.'ii'.f_' f"fl: / e) Merge
4.'_’_ Map ‘-’ Partition — .. > Reduce > l' .

Worker N Worker M

Merge

‘ Output

int (xkey_cmp._t) (const void =x,
| Function that compares two keys

const

r’ ’
The Reduce function. Each reduce task executes this on its input. The arguments are a pointer to a key, a pointer to the
associated values, and value count. If not specified, Phoenix uses a default identity function

voidx)

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - The Runtime
Buffer Management

Map Stage Reduce Stage
Worker 1 Worker 1
b | ll> Map | Partiion 3 7 ll> Reduce P ll
— \ . i } Merge |
,“‘.> Map ‘| Parttion i\ 0 g i Reduce ' I -
3 Split | > 2
g‘ - Split . "‘).I . - Merge > -05
. ,) — 4 @)
— “d1» Map - pamon 7/ 5 || > Reduce = I . -
, /. Vi } Merge
Ml > Map = Paton & 0 g » Reduce = B
Worker N Worker M

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - The Runtime
Buffer Management

Map Stage Reduce Stage
Worker 1 Worker 1
x 11 » Map » partiion \ 7 Il Reduce = I
\ i — } Merge |
vEI»> Map B Patton £\ S g e Reduce ' I —
3 Split | : : e 3
g —p Split .) . - Merge > S
— “Q0» Map B pawon LSS Q1 Reduce - BRL —
, / Vi } Merge
Rl > Map B Pamon ©1 0 g » Reduce = B!
Worker N Worker M

each worker has its own set of buffers resize dynamically

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - The Runtime
Buffer Management

Map Stage Reduce Stage
Worker 1 Worker 1
~ 11> Map ‘| partion \ 7 1> Reduce ' I
— \ : == } Merge |
Vll> Map ‘| Partiion -\ L % Bl » Reduce » I -
S . \ . X\ / ‘IA "‘A H g
g‘ - Split . .) . - Merge > 5
. ,) — 4 O
— “dl» Map - pamon 7/ 5 || > Reduce -
, /. Vi ‘ Merge® °F
\ / > 4
Il > Map = Paon = 4 g » Reduce ' B
Worker N Worker M

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - The Runtime
Concurrency and Locality Management

e Number of Cores and Workers/Core

* Task Assignment

e Task Size

ways to work with the Phoenix
» use a default policy for the specific system which has been developed
o . taking into account its characteristics
° Partltlon FU nCtlon . dyna?nically determine the best policy for each decision by monitoring
resource availability and runtime behavior
« allow the programmer to provide application specific policies. Phoenix
employs all three approaches in making the scheduling decisions

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

The Shared Memory Implementation
The Phoenix System - The Runtime
Shared Memory Concept

counts = {} # keys are words, counts are values
And now let's say that we have a method to count the words in a list:

def count words(list of words):
for word in list of words:
if counts[word]:
counts[word] = counts[word] + 1
else:
counts[word] =1

oouvih WN PR

Methodology

Shared Memory Systems

CMP SMP

Model Sun Fire T1200 Sun Ultra-Enterprise 6000

CPU Type UltraSparc T1 UltraSparc 11
single-issue 4-way issue
in-order in-order

CPU Count 8 24

Threads/CPU | 4 1

L1 Cache 8KB 4-way SA 16KB DM

L2 Size 3MB 12-way SA | 512KB per CPU
shared (off chip)

Clock Freq. 1.2 GHz 250 MHz

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Methodology
Applications

Description Data Sets Code Size Ratio
Pthreads | Phoenix
Word Determine frequency of words in a file S:10MB, M:50MB, L:100MB 1.8 0.9
Count
Matrix Dense integer matrix multiplication S:100x100, M:500x500, L:1000x1000 1.8 2.2
Multiply
Reverse Build reverse index for links in HTML files S:100MB, M:500MB, L:1GB 1.5 0.9
Index
Kmeans Iterative clustering algorithm to classify 3D | S:10K, M:50K, L:100K points 1.2 1.7
data points into groups
String Search file with keys for an encrypted word S:50MB, M:100MB, L:500MB 1.8 1.5
Match
PCA Principal components analysis on a matrix S:500x500, M:1000x1000, L:1500x1500 1.7 2.5
Histogram | Determine frequency of each RGB compo- | S:100MB, M:400MB, L:1.4GB 24 2.2
nent in a set of images
Linear Compute the best fit line for a set of points S:50M, M:100M, L:500M 1.7 1.6
Regression

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

25

CMP Speedup
& S

—
o

Basic Performance evaluation

43 n

@2 Cores
W4 Cores
18 Cores

WerdCount MatrizMalt StringMatch K Re Ind PCA Histogram UnearReg

30

25

20

SMP Speedup
(&)

10

0 L

3539

@2 Cores
W4 Cores
08 Cores
016 Cores
W24 Cores

IJ ‘.ﬂ“.ﬂ] i

WordCount MatrixMult StriagMatch LE T Reverseindex Histogram Unearfteg

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

CMP Speedup

Evaluation

Basic Performance evaluation

43 n 3539

30 @2 Cores 30 B2 Cores
W4 Cores W4 Cores
(18 Cores 18 Cores
25 25 _| (116 Cores
W24 Cores
20 a20
g
. u/ ' X3 l
o
@
10 10
0
PCA Istogram

WerdCount Matriz Mot StringMaich Kmaa~a Reoverssindex PCA Histogram UnearReg WeordCount MatrixNult StringMatch Kmeams Reverseindex M Unearfteg

histogram and PCA are not key value naturally structured —> overheads

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Data Test Size

30 38 72
BEsmall
B medium
25 | Olarge
n20
§
Q.
3 15
o
5
10 |
5
0 L - - - . . -
Wordcount Matrix mult String match Kmeans Reverseindex PCA Mistogram Linear Reg

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Data Test Size

30 38 72
Bsmall
B medium
25 Olarge
V4
§
Q.
215 /
o
3
10
5
Wordcount Matrix mult String match Kmeans Reverseindex PCA Histogram Linear Reg

why linearReg and Matinv?

for small data set many operations- a lot of computation per element—> sufficient to fully utilize all available parallel resources

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Unit Size

30 64 687273
' @ 4KB Unit Size
W 16KB Unit Size
25 [0 64KB Unit Size
[J128KB Unit Size
20
Qo
=
H
a 15
o
= -
(&)
10 =
| —|
o | .
WordCoumt MatrixMult StringMatch Kmeans Reverseindex PCA Histogram LinearReg

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Unit Size

64 687273

30 4KB Unit Size
M 16KB Unit Size
25 [064KB Unit Size
0 128KB Unit Size

N
o

CMP Speedup
(9,}

N\ -

b
o

|

WordCoumt MatrixMuit StringMatch Kmeans Reverseindex PCA Histogram LinearReg

in histogram it reduces the number of inter-mediate values to merge across task

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Unit Size

30 64687273
E4KB Unit Size
M 16KB Unit Size
25 [0 64KB Unit Size
[J128KB Unit Size
20
o
3
g
a 15
o
= -
(&)
10 u
5
o J
WordCount MatrixMult StringMatch Kmeans Reverselndex PCA Histogram LinearReg

Kmeans and Matinv applications with short term temporal locality allow tasks to operate on data within their L1 cache or the data for all the active

tasks to fit in the shared L2
Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Comparison to Pthreads

2 12 3w
30 30 .
@ Pthreacs @ Pthreads
=] i i
25 Phoenix 25 B Phoenix
20
10
5 5
0 y 0
Wordoount Matrix_| Kmeans Reverseindex Hstogram Unear_reg Weedcournt Matrix_| Reversendex PCA

mut String_manch PCA a malt String_mateh Kmeans Histogram LUinear_reg

N
o

CMP Speedup
&

SMP Speedup
W

-t
o

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Comparison to Pthreads

30 30
@ Pthreads B Pthreads
B Phoeni K
*) 25 bt
20 20
S g
, g
o
5 =
10 ? 10
5 5
0 0 -
Wordcount Matrix_mut String_match Kmeans Reverseindex PCA Weedcournt Matrix_madt String_mateh Kmeans Reversendex

Kmeans invokes the Phoenix scheduler iteratively, which introduces significant overhead, translate the output pair format to the

input pair format

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

Comparison to Pthreads

30 30
@ Pthreads B Pthreads
B Phoeni B Phoenix
25 * 25
20 20
S s
, g
§ 5 215
o
5 g
10 “ 10
5 5
0 0 -
Wordoount Matrix_mut String_manch Kmeans Reverseindex PCA Weedcournt m_uu mm Histogram LUinear_reg

MapReduce code does not use the original array structure Pca must track the coordinates for each data
point separately. While the P-threads code uses direct array accesses and does

not experience any additional overhead

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ 1 Computer Systems Laboratory, Stanford University

Evaluation

An intuition?

Evaluation

An intuition?

Conclusion

* Phoenix leads to scalable performance for both multi-core chips
and conventional symmetric multiprocessors

* Phoenix automatically handles key scheduling decisions during
parallel execution

e Despite runtime overheads, Phoenix leads to similar performance
for most applications

e Partition Function

