
Evaluating MapReduce for Multi-core
and Multiprocessor Systems

Shiran Dudy
20/04/14

Outline
• Introduction

• Overview of MapReduce

• Shared-memory implementation

• Evaluation methodology

• Evaluation results

• Conclusions

• Discussion with regard to additional work

Overview of MapReduce

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010	

!

Programming Model

Overview of MapReduce

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010	

!

Programming Model

Overview of MapReduce

http://dme.rwth-aachen.de/de/research/projects/mapreduce	

Runtime System

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce

http://dme.rwth-aachen.de/de/research/projects/mapreduce	

Runtime System

modify the size of the unit

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce

http://dme.rwth-aachen.de/de/research/projects/mapreduce	

Runtime System

modify the number of nodes

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce

http://dme.rwth-aachen.de/de/research/projects/mapreduce	

Runtime System

assign to itself the next task while processing the current

http://dme.rwth-aachen.de/de/research/projects/mapreduce

Overview of MapReduce

 Coping with failures

• re assign a Map/Reduce when detected a
node has failed

• re execute the specific Map/Reduce tasks
when there’s a memory corruption

• dynamically adjust the number of nodes it
uses due to a hostile environment (heat,
power failure)

Runtime System

Overview of MapReduce

How big is the overhead?

!

Runtime System

The Shared Memory Implementation

API

Runtime

!

The Phoenix System

Basic operation and control flow

Buffer management

Fault recovery

Concurrency and locality management

The Shared Memory Implementation

API!

Runtime

!

The Phoenix System

Basic operation and control flow

Buffer management

Fault recovery

Concurrency and locality management

The Shared Memory Implementation
The Phoenix System - API

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

The Shared Memory Implementation
The Phoenix System - API

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

The Shared Memory Implementation
The Phoenix System - API

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

The Shared Memory Implementation

API

Runtime!

!

The Phoenix System

Basic operation and control flow

Buffer management

Fault recovery

Concurrency and locality management

The Shared Memory Implementation
The Phoenix System - The Runtime

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Basic Operation and Control Flow

The Shared Memory Implementation
The Phoenix System - The Runtime

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Basic Operation and Control Flow

The Shared Memory Implementation
The Phoenix System - The Runtime

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Basic Operation and Control Flow

The Shared Memory Implementation
The Phoenix System - The Runtime

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Buffer Management

The Shared Memory Implementation
The Phoenix System - The Runtime

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Buffer Management

each worker has its own set of buffers resize dynamically

The Shared Memory Implementation
The Phoenix System - The Runtime

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Buffer Management

The Shared Memory Implementation
The Phoenix System - The Runtime

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Concurrency and Locality Management!

• Number of Cores and Workers/Core

• Task Assignment

• Task Size

• Partition Function

!

ways to work with the Phoenix
• use a default policy for the specific system which has been developed

taking into account its characteristics
• dynamically determine the best policy for each decision by monitoring

resource availability and runtime behavior
• allow the programmer to provide application specific policies. Phoenix

employs all three approaches in making the scheduling decisions

The Shared Memory Implementation
The Phoenix System - The Runtime
Shared Memory Concept

counts	 =	 {}	 #	 keys	 are	 words,	 counts	 are	 values	
!
And	 now	 let's	 say	 that	 we	 have	 a	 method	 to	 count	 the	 words	 in	 a	 list:	
!
1	 def	 count_words(list_of_words):	
2	 	 for	 word	 in	 list_of_words:	
3	 	 	 if	 counts[word]:	
4	 	 	 	 counts[word]	 =	 counts[word]	 +	 1	
5	 	 	 else:	
6	 	 	 	 counts[word]	 =	 1

Methodology
Shared Memory Systems

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Methodology
Applications

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Basic Performance evaluation

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Basic Performance evaluation

histogram and PCA are not key value naturally structured —> overheads

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Data Test Size

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Data Test Size

why linearReg and Matinv?
for small data set many operations- a lot of computation per element—> sufficient to fully utilize all available parallel resources

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Unit Size

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Unit Size

in histogram it reduces the number of inter-mediate values to merge across task

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Unit Size

Kmeans and Matinv applications with short term temporal locality allow tasks to operate on data within their L1 cache or the data for all the active
tasks to fit in the shared L2

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Comparison to Pthreads

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Comparison to Pthreads

Kmeans invokes the Phoenix scheduler iteratively, which introduces significant overhead, translate the output pair format to the
input pair format

Evaluation

Evaluating MapReduce for Multi-core and Multiprocessor Systems, Colby Ranger @ l Computer Systems Laboratory, Stanford University	

!

Comparison to Pthreads

MapReduce code does not use the original array structure Pca must track the coordinates for each data
point separately. While the P-threads code uses direct array accesses and does
not experience any additional overhead

Evaluation

An intuition?

Evaluation

An intuition?

Conclusion
!

• Phoenix leads to scalable performance for both multi-core chips
and conventional symmetric multiprocessors

• Phoenix automatically handles key scheduling decisions during
parallel execution

• Despite runtime overheads, Phoenix leads to similar performance
for most applications

• Partition Function

!

