Problem Solving With Large Clusters

What’s the problem, and what resources do we have?

3/31/2014 CSE 5/606 PSLC



Game plan for today:

Structure of the course
Overview of parallel and distributed computing
Quick intro to distributed file systems

First steps with MapReduce & Hadoop



http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/

Grading: Students will be graded as follows: 20% final project; 20%
assignments; 60 % participation (including paper presentations). This
will largely be a "seminar-style" course, and most sessions will revolve
around student-led discussions of papers. Everybody should come to
class having read the papers and prepared to participate in the
discussion.
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» Focus: Conventional vs. distributed algorithm

» Problem: What is the problem? Why is it important?

» Background: What are the conventional algorithms? You may
ignore the specifics of the application area.

» Distributed Algorithm: Detalls, assumptions and advantages

> Evaluation: Experimental paradigm, corpus

» Results: Outcomes, analysis and discussion


http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/
http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/

Game plan for today:

Structure of the course
Overview of parallel and distributed computing
Quick intro to distributed file systems

First steps with MapReduce & Hadoop



The problem:

Many things we might want to do
with computers take a long time.

Why?

Trivial answer: they require the
computer to do a lot of work.



The problem:

This can be for two main reasons:

1. We are working with a lot of data

2. We have to do a lot of computations on
each chunk of data.

A common solution: split the work up!



A common solution: split the work up!

1. Do parts of the computation in parallel
(less work per processor)

2. Split the data onto multiple computers
(less data per processor)

Often, we (try to) do both!
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Ultimately, it all comes down to feeding
instructions and data to processors:
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Most modern CPUs are SIMD (SSE3, etc.)...



Ultimately, it all comes down to feeding
instructions and data to processors:

SIMD Instruction Pool MIMD Instruction Pool
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Single Instruction, Multiple Data Multiple Instruction, Multiple Data

Some architectures are MIMD, e.g. Intel “Xeon
Phi” and most modern parallel machines.



A single computer can have more than one
CPU...

As a single bus:

CEL] CEL] memory

As a single bus w/ cache:

CPU CPU

memaory

cache cache




The question becomes: how to share
memory across many CPUs¢

ITCTNNTY [IEITTY METIOTY
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A crossbar topology is simple, but has many
expensive* swtiches.



The question becomes: how to share
memory across many CPUs¢

ITCTNNTY [IEITTY METIOTY
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crosspoint switch

Expensive in terms of both time and silicon!



The question becomes: how to share
memory across many CPUs¢

2% 2 switch
CPU MEMmory

CPU MEmoTry
CPU MEemory
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Non-uniform memory access (NUMA) is a
common compromise (Intel Nehalem,
Westmere, etc.).



In the real world, there is never a linear
speedup with an increase in CPUs.

Amdahl's Law
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Amdahl’s law states that the maximum
speedup is related to the fraction of a
program’s work that is serial.



Other holdups include cache stalls, disk
latency, etc. etc.

There are also the dreaded “fallacies of
distributed computing” to keep in mind...
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. The network is reliable.

. Latency is zero.

. Bandwidth is infinite.

. The network is secure.

. Topology doesn't change.
. There is one administrator.
. Transport cost Is zero.

. The network is homogeneous.


http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_administrator
http://en.wikipedia.org/wiki/Network_administrator

So, what do we have at CSLU?



The OHSU bigbird cluster uses Westmere
CPUs; 2x per node.
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The bigbird cluster has 56 accessible nodes
(b1gb1rdXX.csee.og1.edu).

Each node uses Westmere CPUs; 2x per node
(total of 24 logical cores).

EFach node has 48 GB of RAM, and all share
a large distributed file system.



Let’s talk about storage.

Most hard drives are still mechanical.
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Hard disk has a number of disks
Each disk segmented into tracks and sectors

Disk speed: access time = seek time + latency time

Seek time: Time required to bring the head to the track
Latency time: Time required for the sector to reach the head
Platters spin about 7k to 15k rpm

Disk-to-buffer about 1Gbits/s, depends on track

Modern SSDs avoid these problems, but
introduce others: Cost, limited life-span, etc.



There are many consequences of the
mechanical nature of hard disks:

Reading/writing a small number of large
files is far faster than reading/writing a large
number of small files.

+A Moving parts -> +A things that can break.



(Patterson, Gibson and Katz, 1987)
» Cost-effective to build capacity with many cheaper disks
> Divide the file into stripes, saved on independent disks
» Better performance by putting all the disks to work
» Compensate for higher failure rates with redundancy or parity
» RAIDO: block level striping, zero redundancy, read nX
» RAID1: full mirroring, read nX, write 1x
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» RAIDZ2: bit-level, parity, sync-ed spindles
» RAIDS: byte-level, parity, sync-ed spindles
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» RAID4: block-level, dedicated parity
» RAIDG6: block-level, doubly distributed parity
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That’s all well and good if you've only got
one machine...

... but what if you need to share a disk array
with more than one machine, over a network?

LINIX

_ NFS gives file-level access, with
: server-side caching and
coherency.

NFS Client

-

JFS
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: I - UNIX M
I Other network file systems
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provide block-level access, etc.




Our cluster uses the Lustre distributed
network file system:

Clients

D

o /®_®
MDS sda

{-*""" TCP Network @ @

) —

£ """“j/
{

-

0552 sdc



MDS disk storage containing
Metadata Targets (MDT)

7

Pool of clustered MDS servers
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Lustre holds up well under concurrent load:
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Lustre holds up well under concurrent load:
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18 TB Lustre system (/I2/users/userid)
» MDS: 2 x 4-core CPUs @ SGH;, 16 GB
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—
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» ODS (5): 2 x 4-core CPUs @ 3GHz, 16 GB
» ODT:7.2krpm, 1 TBx 6
» Note: Limited backup

Future upgrades are planned!



We'll be talking more about distributed file
systems/stores throughout the course.



Systems such as Lustre are extensions of
traditional file systems...

... but for truly large data collections, the file
system model can be inadequate.

File systems such as the Google File System
(GFS) and the Hadoop File System (HDFS)
can offer more scalability and reliability.



GFS was invented at Google to store their
web search index:

» Fault-tolerance

» Implemented at user-level, provides location-awareness

» Assumptions: high sustained bandwidth > low latency

» Large files are typical
» Large streaming reads and small random reads
» Large sequential writes and small random writes

» No file or directory aliases (hard or soft links)
» Clients can concurrently append to a file efficieintly



Google File System

Applicati . -
PRUGHTER (file name, chunk index) _

GFS client |

(chunk handle,
chunk locations)

chunk data

GFS master

File namespace

A

LY

7

L%

= /foo/bar
Ichunk Ecﬂll

{ Ilnstructmnﬁ to chunkserver

GFS chunkserver

Linux file system

Chunkserver state ‘ I

iZ_Z] i

-

GFS chunkserver

Linux file system

Legend:

—

—_—

Figure 1: GFS Architecture

» Single master, multiple chunkservers

> Files are divided up into chunk, ID-ed by an addres

» Chunkservers manage chunks like local files

» Chunk data replicated for reliability

Data messages
Control messages
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Figure 1: GFS Architecture

HDES is essentially an open-source

implementation of GFS.



We'll be talking more about distributed file
systems/stores throughout the course!



Switching gears:

1. Do parts of the computation in parallel

2. Split the data onto multiple computers



There are many different ways to split up a
problem to multiple computers...

One common paradigm is MapReduce.



MapReduce parallelizes serial programs by
splitting them into two parts:

A “mapper”, which runs in parallel across
an entire data set; and

A “reducer”, which operates on the result of
the mapper.



An implementation of MapReduce (e.g.,
Hadoop) provides an environment for
scheduling and running mappers and
reducers.

This includes not just job control, but also
data flow management.



The basic unit of operation in a MapReduce
program is a <key,value> tuple.

Mappers read tuples and produce new
tuples...

... Reducers process the aggregated results
of mappers, and produce new tuples.

The MapReduce runtime takes care of
managing which tuples get sent where.
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The MapReduce model makes several working
assumptions:

1. Assume failures are common

2. Move processing to the data

3. Process data sequentially (avoid random access)
4. Hide system-level details

5. Seamless scalability



Quick aside: Where does the name come from?
VAV avaval

Most functional programming languages define
“map” and “reduce” (aka “fold”) operators.



Most functional programming languages define
“map” and “reduce” (aka “fold”) operators.

“map” takes a function and applies it once to
each item in a list:

map(t, [a, b, ¢, d]) =[fCa), f(b), f(c), t(d)]

def square(n) :
return n * n

nums = [1,2,3,4]

squares = map (square, nums)



Most functional programming languages define
“map” and “reduce” (aka “fold”) operators.

“reduce” recursively applies a function to each
item in a list.

reduce(f, [a, b, c, d]) = f(a, f(b, f(c, d)))
reduce(sum, [1, 2, 3, 4]) = sum(1l, sum(Z2, sum(3, 4)))

def r(a, b):
return a + D

nums = [1, 2, 3, 4, 5, 0]

total = reduce(r, nums)



In MapReduce land:

Mappers emit key-value pairs in parallel...

... which are then shuffled and sorted by key.

Tuples with the same key are passed to the same
reducer...

... who then outputs its own list of tuples.

The MapReduce runtime makes sure that
everything works the way it should.



“Hello World” in MapReduce: Word Counting

1: class M APPER

2: method Mavr(docid a, doc d)
3: for all term ¢ € doc d do
4: EMiT(term ¢, count 1)

. class REDUCER
method REpUCE(term ¢, counts [cq, ¢2, .. .])
sum < (

1
2
3
4; for all count ¢ € counts [c1, ¢2, ...] do
5 SUm <— sum —+ ¢

6

EMiT(term ¢, count sum)



Problems with this approach:

1. Lots of key-value pairs flying around (one per
word!)

2. Some reducers will have a lot more work to do
than others (i.e., the one that has to add up “the”)



Partitioners and Combiners help avoid these
problems by aggregating values at earlier steps.

Partitioners divide up the intermediate key space
and assign keys to reducers...

... by default, by hashing the key and assigning
modulo the number of reducers.

If needed, you can divide up the key space in
other ways.



Partitioners and Combiners help avoid these
problems by aggregating values at earlier steps.

Combiners are sometimes called “mini-
reducers”, and operate on the output of
individual mappers.

This pattern can result in major performance
Improvements!



Partitioners and Combiners help avoid these
problems by aggregating values at earlier steps.
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1: class M APPER

2 method MAap(docid a, doc d)

3: H < new ASSOCIATIVEARRAY
4 for all term ¢ € doc d do

5 H{t} < H{t} +1

6: forall term ¢t € H do

7: Emit(term ¢, count H{t})

1: class M APPER

2 method INITIALIZE

3 H < new ASSOCIATIVEARRAY
4 method Mar(docid a, doc d)

5 for all term ¢t € doc d do

6 H{t} < H{t} + 1

7

8

9

method CLOSE
forall term r € H do
Emit(term ¢, count H{t})

> Tally counts for entire document

> Tally counts across documents



Things to keep in mind:

Tuples with the same key will be sent to the same
reducer...

... but there is no way to specity, a priori, which
specific reducer instance will get which key!

Combiners must therefore accept and emit data
in the same format as the output of the mapper...

... and it is up to the runtime to decide how
many times (or even if!) combiners will be run.



You have little/no control over:
On which node a mapper or reducer runs...

When a mapper or reducer starts/stops...

Which key-value pairs are processed by a
specific mapper...

Which key-value pairs are processed by a
specific reducer.



You can control:

What goes inside of keys and values...

Startup/shutdown code for mapper/reducer
Instances...

Preservation of state within a mapper/reducer
instance across multiple input keys...

Sort order of intermediate key/value pairs, and
therefore the order that a reducer encounters its
data.



What is MapReduce “bad” at:

Anything that involves random access through an
entire data set.

Thought experiment: How would you go about
extending the word count program to compute
maximum likelihood frequency estimates?

Most difficult MapReduce programming
problems involve working around this limitation.



Our cluster runs the “Hadoop” open-source
MapReduce implementation.

© TiEEEEE

Hadoop has its own implementation of GFS
(called HDFS); our cluster has =14 TB of HDFS
storage (total, not available!).



CrThEElEEm

Hadoop jobs can be run in a variety of ways; the
two main ones are:

1. A native Java API, and

2. “Streaming” mode, in which mappers and

reducers can be written in any language with
STDIN/STDOUT.



Hadoop has a web-based control panel, |

addition to command-line tools:
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Let’s do a real example!



About the pubmed corpus:

66 years of MEDLINE (1946-2012) references.

Titles, abstracts, index terms, authors, etc.

Stored in serialized JSON blobs.

Keys are PMIDs, values are JSON objects
representing articles.

20.5 million articles.



Question: What'’s the distribution of article title
length like?

Let’s look at solving it using both the Java API and
streaming mode.
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