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Problem Solving With Large Clusters
What’s the problem, and what resources do we have?



Game plan for today:

Overview of parallel and distributed computing

Quick intro to distributed file systems

First steps with MapReduce & Hadoop

Structure of the course



Course Overview
1. Topics Covered
http://www.csee.ogi.edu/

⇠
zak/cs506-pslc

2. Concerning paper discussion
I Focus: Conventional vs. distributed algorithm
I Problem: What is the problem? Why is it important?
I Background: What are the conventional algorithms? You may

ignore the specifics of the application area.
I Distributed Algorithm: Details, assumptions and advantages
I Evaluation: Experimental paradigm, corpus
I Results: Outcomes, analysis and discussion

3. Evaluation
I Assignments
I In-class participation
I Final project

4. Bring laptops for exercises in class.

http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/

Grading: Students will be graded as follows: 20% final project; 20% 
assignments; 60% participation (including paper presentations). This 
will largely be a "seminar-style" course, and most sessions will revolve 
around student-led discussions of papers. Everybody should come to 
class having read the papers and prepared to participate in the 
discussion.

http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/
http://www.cslu.ogi.edu/~bedricks/courses/cs506-pslc/


Game plan for today:

Overview of parallel and distributed computing

Quick intro to distributed file systems

First steps with MapReduce & Hadoop

Structure of the course



The problem:

Many things we might want to do 
with computers take a long time.

Why?

Trivial answer: they require the 
computer to do a lot of work.



The problem:

This can be for two main reasons:

1. We are working with a lot of data

2. We have to do a lot of computations on 
each chunk of data.

A common solution: split the work up!



A common solution: split the work up!

1. Do parts of the computation in parallel 
(less work per processor)

2. Split the data onto multiple computers
(less data per processor)

Often, we (try to) do both!







Ultimately, it all comes down to feeding 
instructions and data to processors:

Single Instruction, Single Data Single Instruction, Multiple Data

Most modern CPUs are SIMD (SSE3, etc.)...



Ultimately, it all comes down to feeding 
instructions and data to processors:

Single Instruction, Multiple Data Multiple Instruction, Multiple Data

Some architectures are MIMD, e.g. Intel “Xeon 
Phi” and most modern parallel machines.



A single computer can have more than one 
CPU...Sharing Data Across Processors

Single bus (symmetric multiprocessing or SMP)

Single bus w/ cache

Cons: CPU bottlenecked by memory access

As a single bus:

As a single bus w/ cache:

Sharing Data Across Processors

Single bus (symmetric multiprocessing or SMP)

Single bus w/ cache

Cons: CPU bottlenecked by memory access



Sharing Data Across Processors: Crossbar

Cons: Too many expensive switches

The question becomes: how to share 
memory across many CPUs?

A crossbar topology is simple, but has many 
expensive* swtiches.



Sharing Data Across Processors: Crossbar

Cons: Too many expensive switches

The question becomes: how to share 
memory across many CPUs?

Expensive in terms of both time and silicon!



The question becomes: how to share 
memory across many CPUs?Non-uniform Memory Access (NUMA): A Compromise

E.g.: Intel’s current generation of chips – Nehalem, Westmere, . . .Non-uniform memory access (NUMA) is a 
common compromise (Intel Nehalem, 
Westmere, etc.).



In the real world, there is never a linear 
speedup with an increase in CPUs.

Amdahl’s law states that the maximum 
speedup is related to the fraction of a 
program’s work that is serial.

T: time taken

n: num. threads

B: proportion of algorithm 
that is strictly serial.



Other holdups include cache stalls, disk 
latency, etc. etc.

There are also the dreaded “fallacies of 
distributed computing” to keep in mind...



1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Network_administrator
http://en.wikipedia.org/wiki/Network_administrator


So, what do we have at CSLU?



Westmere (BigbirdX)

The OHSU bigbird cluster uses Westmere 
CPUs; 2x per node.



Each node uses Westmere CPUs; 2x per node 
(total of 24 logical cores).

The bigbird cluster has 56 accessible nodes 
(bigbirdXX.csee.ogi.edu).

Each node has 48 GB of RAM, and all share 
a large distributed file system.



Let’s talk about storage.Hard Disk Drives: 1956 IBM 350 RAMAC

Hard disks are still mechanical !!

Hard Disk Drives: 1956 IBM 350 RAMAC

Hard disks are still mechanical !!
Most hard drives are still mechanical.



Hard Disk
I Hard disk has a number of disks
I Each disk segmented into tracks and sectors

I Disk speed: access time = seek time + latency time
I Seek time: Time required to bring the head to the track
I Latency time: Time required for the sector to reach the head
I Platters spin about 7k to 15k rpm
I Disk-to-buffer about 1Gbits/s, depends on track

Modern SSDs avoid these problems, but 
introduce others: Cost, limited life-span, etc.



There are many consequences of the 
mechanical nature of hard disks:

Reading/writing a small number of large 
files is far faster than reading/writing a large 
number of small files.

+∆ Moving parts -> +∆ things that can break.



Redundant Arrays of Inexpensive Disks (RAID)

(Patterson, Gibson and Katz, 1987)
I Cost-effective to build capacity with many cheaper disks
I Divide the file into stripes, saved on independent disks
I Better performance by putting all the disks to work
I Compensate for higher failure rates with redundancy or parity
I RAID0: block level striping, zero redundancy, read nX
I RAID1: full mirroring, read nX, write 1x



RAID
I RAID2: bit-level, parity, sync-ed spindles
I RAID3: byte-level, parity, sync-ed spindles



RAID
I RAID4: block-level, dedicated parity
I RAID6: block-level, doubly distributed parity



That’s all well and good if you’ve only got 
one machine...

... but what if you need to share a disk array 
with more than one machine, over a network?

File System: Spreading Files Across Machines

I Network File System (NFS): File-level access, cache and
validate with server for coherency

I Andrew File System (AFS): Block-level access, cache and
callback promise for coherency

I But, both are subject to network bottlenecks at the server !!

NFS gives file-level access, with 
server-side caching and 
coherency.

Other network file systems 
provide block-level access, etc.



Lustre File System

I Block size tuned to usage
I Big files are better than too many small ones
I E.g: 1 file w/ 160 stripes x 8 TB = 1.48 PB per file

Our cluster uses the Lustre distributed 
network file system:



Lustre File System



Lustre File System: Comparison
Lustre holds up well under concurrent load:



Lustre File System: Comparison
Lustre holds up well under concurrent load:



CSLU Lustre File System

18 TB Lustre system (/l2/users/userid)
I MDS: 2 x 4-core CPUs @ 3GHz, 16 GB

I MDT: 15k rpm, 400GB x 15 (6 TB)

I ODS (5): 2 x 4-core CPUs @ 3GHz, 16 GB
I ODT: 7.2k rpm, 1 TB x 6
I Note: Limited backup

Future upgrades are planned!



We’ll be talking more about distributed file 
systems/stores throughout the course.



Systems such as Lustre are extensions of 
traditional file systems...

... but for truly large data collections, the file 
system model can be inadequate.

File systems such as the Google File System 
(GFS) and the Hadoop File System (HDFS) 
can offer more scalability and reliability.



Google File System

I Fault-tolerance
I Implemented at user-level, provides location-awareness
I Assumptions: high sustained bandwidth > low latency

I Large files are typical
I Large streaming reads and small random reads
I Large sequential writes and small random writes

I No file or directory aliases (hard or soft links)
I Clients can concurrently append to a file efficieintly

GFS was invented at Google to store their 
web search index:



Google File System

I Single master, multiple chunkservers
I Files are divided up into chunk, ID-ed by an addres
I Chunkservers manage chunks like local files
I Chunk data replicated for reliability



Google File System: Read Operation

I Client requests file name and byte offset (chunk size)
I Master sends chunk handler, locations of replicas
I Client caches this (how does it maintain coherency?)
I Client reqests file data from closest server

HDFS is essentially an open-source 
implementation of GFS.



We’ll be talking more about distributed file 
systems/stores throughout the course!



Switching gears:

1. Do parts of the computation in parallel

2. Split the data onto multiple computers



There are many different ways to split up a 
problem to multiple computers... 

One common paradigm is MapReduce.



MapReduce parallelizes serial programs by 
splitting them into two parts:

A “mapper”, which runs in parallel across 
an entire data set; and

A “reducer”, which operates on the result of 
the mapper.



An implementation of MapReduce (e.g., 
Hadoop) provides an environment for 
scheduling and running mappers and 
reducers.

This includes not just job control, but also 
data flow management.



The basic unit of operation in a MapReduce 
program is a <key,value> tuple.

Mappers read tuples and produce new 
tuples...

... Reducers process the aggregated results 
of mappers, and produce new tuples.

The MapReduce runtime takes care of 
managing which tuples get sent where.



22 2. MAPREDUCE BASICS
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b1 2 3 6 5 2 b 7 8

mapper mapper mapper mapper

Shuffle and Sort: aggregate values by keys

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 9 8

reducer reducer reducer

X 5 Y 7 Z 9

Figure 2.2: Simplified view of MapReduce. Mappers are applied to all input key-value pairs, which
generate an arbitrary number of intermediate key-value pairs. Reducers are applied to all values associated
with the same key. Between the map and reduce phases lies a barrier that involves a large distributed sort
and group by.

1: class Mapper
2: method Map(docid a, doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum← sum + c

6: Emit(term t, count sum)

Figure 2.3: Pseudo-code for the word count algorithm in MapReduce.The mapper emits an intermediate
key-value pair for each word in a document. The reducer sums up all counts for each word.



The MapReduce model makes several working 
assumptions:

1. Assume failures are common

2. Move processing to the data

3. Process data sequentially (avoid random access)

4. Hide system-level details

5. Seamless scalability



Quick aside: Where does the name come from?
2.1. FUNCTIONAL PROGRAMMING ROOTS 19

f f f f f

g g g g g

Figure 2.1: Illustration of map and fold, two higher-order functions commonly used together in functional
programming: map takes a function f and applies it to every element in a list, while fold iteratively applies
a function g to aggregate results.

that can accept other functions as arguments. Two common built-in higher order functions are map
and fold, illustrated in Figure 2.1. Given a list, map takes as an argument a function f (that takes a
single argument) and applies it to all elements in a list (the top part of the diagram). Given a list,
fold takes as arguments a function g (that takes two arguments) and an initial value: g is first applied
to the initial value and the first item in the list, the result of which is stored in an intermediate
variable. This intermediate variable and the next item in the list serve as the arguments to a second
application of g, the results of which are stored in the intermediate variable. This process repeats
until all items in the list have been consumed; fold then returns the final value of the intermediate
variable.Typically, map and fold are used in combination. For example, to compute the sum of squares
of a list of integers, one could map a function that squares its argument (i.e., λx.x2) over the input
list, and then fold the resulting list with the addition function (more precisely, λxλy.x + y) using
an initial value of zero.

We can view map as a concise way to represent the transformation of a dataset (as defined
by the function f ). In the same vein, we can view fold as an aggregation operation, as defined by
the function g. One immediate observation is that the application of f to each item in a list (or
more generally, to elements in a large dataset) can be parallelized in a straightforward manner, since
each functional application happens in isolation. In a cluster, these operations can be distributed
across many different machines. The fold operation, on the other hand, has more restrictions on
data locality—elements in the list must be “brought together” before the function g can be applied.
However, many real-world applications do not require g to be applied to all elements of the list. To
the extent that elements in the list can be divided into groups, the fold aggregations can also proceed

Most functional programming languages define 
“map” and “reduce” (aka “fold”) operators.



Most functional programming languages define 
“map” and “reduce” (aka “fold”) operators.

“map” takes a function and applies it once to 
each item in a list:

def square(n):
    return n * n
    
nums = [1,2,3,4]

squares = map(square, nums) # [1,4,9,16]

map(f, [a, b, c, d]) =[f(a), f(b), f(c), f(d)]



Most functional programming languages define 
“map” and “reduce” (aka “fold”) operators.

“reduce” recursively applies a function to each 
item in a list. 

reduce(f, [a, b, c, d]) = f(a, f(b, f(c, d)))

reduce(sum, [1, 2, 3, 4]) = sum(1, sum(2, sum(3, 4)))

def r(a, b):
    return a + b

nums = [1, 2, 3, 4, 5, 6]

total = reduce(r, nums) # 21



In MapReduce land:

Mappers emit key-value pairs in parallel...

... which are then shuffled and sorted by key.

Tuples with the same key are passed to the same 
reducer...

... who then outputs its own list of tuples.

The MapReduce runtime makes sure that 
everything works the way it should.
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Figure 2.2: Simplified view of MapReduce. Mappers are applied to all input key-value pairs, which
generate an arbitrary number of intermediate key-value pairs. Reducers are applied to all values associated
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1: class Mapper
2: method Map(docid a, doc d)
3: for all term t ∈ doc d do
4: Emit(term t, count 1)

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum← 0
4: for all count c ∈ counts [c1, c2, . . .] do
5: sum← sum + c

6: Emit(term t, count sum)

Figure 2.3: Pseudo-code for the word count algorithm in MapReduce.The mapper emits an intermediate
key-value pair for each word in a document. The reducer sums up all counts for each word.

“Hello World” in MapReduce: Word Counting



Problems with this approach:

1. Lots of key-value pairs flying around (one per 
word!)

2. Some reducers will have a lot more work to do 
than others (i.e., the one that has to add up “the”)



Partitioners and Combiners help avoid these 
problems by aggregating values at earlier steps.

Partitioners divide up the intermediate key space 
and assign keys to reducers...

... by default, by hashing the key and assigning 
modulo the number of reducers.

If needed, you can divide up the key space in 
other ways.



Partitioners and Combiners help avoid these 
problems by aggregating values at earlier steps.

Combiners are sometimes called “mini-
reducers”, and operate on the output of 
individual mappers.

This pattern can result in major performance 
improvements!



28 2. MAPREDUCE BASICS
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Figure 2.4: Complete view of MapReduce, illustrating combiners and partitioners in addition to mappers
and reducers.Combiners can be viewed as “mini-reducers” in the map phase.Partitioners determine which
reducer is responsible for a particular key.

key, and the execution framework uses this information to copy the data to the right location
during the shuffle and sort phase.13 Therefore, a complete MapReduce job consists of code for the
mapper, reducer, combiner, and partitioner, along with job configuration parameters. The execution
framework handles everything else.

2.5 THE DISTRIBUTED FILE SYSTEM
So far, we have mostly focused on the processing aspect of data-intensive processing, but it is impor-
tant to recognize that without data, there is nothing to compute on. In high-performance computing
(HPC) and many traditional cluster architectures, storage is viewed as a distinct and separate com-
ponent from computation. Implementations vary widely, but network-attached storage (NAS) and
storage area networks (SAN) are common; supercomputers often have dedicated subsystems for
handling storage (separate nodes, and often even separate networks). Regardless of the details, the

13In Hadoop, partitioners are actually executed before combiners, so while Figure 2.4 is conceptually accurate, it doesn’t precisely
describe the Hadoop implementation.

Partitioners and Combiners help avoid these 
problems by aggregating values at earlier steps.



3.1. LOCAL AGGREGATION 41

1: class Mapper
2: method Map(docid a, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H {t}← H {t} + 1 ◃Tally counts for entire document
6: for all term t ∈ H do
7: Emit(term t, count H {t})

Figure 3.2: Pseudo-code for the improved MapReduce word count algorithm that uses an associative
array to aggregate term counts on a per-document basis. Reducer is the same as in Figure 3.1.

1: class Mapper
2: method Initialize
3: H ← new AssociativeArray
4: method Map(docid a, doc d)
5: for all term t ∈ doc d do
6: H {t}← H {t} + 1 ◃Tally counts across documents
7: method Close
8: for all term t ∈ H do
9: Emit(term t, count H {t})

Figure 3.3: Pseudo-code for the improved MapReduce word count algorithm that demonstrates the
“in-mapper combining” design pattern. Reducer is the same as in Figure 3.1.

when the mapper has processed all documents. That is, emission of intermediate data is deferred
until the Close method in the pseudo-code. Recall that this API hook provides an opportunity to
execute user-specified code after the Map method has been applied to all input key-value pairs of
the input data split to which the map task was assigned.

With this technique, we are in essence incorporating combiner functionality directly inside
the mapper.There is no need to run a separate combiner, since all opportunities for local aggregation
are already exploited.2 This is a sufficiently common design pattern in MapReduce that it’s worth
giving it a name, “in-mapper combining”, so that we can refer to the pattern more conveniently
throughout the book. We’ll see later on how this pattern can be applied to a variety of problems.
There are two main advantages to using this design pattern:

First, it provides control over when local aggregation occurs and how it exactly takes place.
In contrast, the semantics of the combiner is underspecified in MapReduce. For example, Hadoop
makes no guarantees on how many times the combiner is applied, or that it is even applied at all.The

2Leaving aside the minor complication that in Hadoop, combiners can be run in the reduce phase also (when merging intermediate
key-value pairs from different map tasks). However, in practice, it makes almost no difference either way.
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Things to keep in mind:

Tuples with the same key will be sent to the same 
reducer...

... but there is no way to specify, a priori, which 
specific reducer instance will get which key!

Combiners must therefore accept and emit data 
in the same format as the output of the mapper...

... and it is up to the runtime to decide how 
many times (or even if!) combiners will be run.



You have little/no control over:

On which node a mapper or reducer runs...

When a mapper or reducer starts/stops...

Which key-value pairs are processed by a 
specific mapper...

Which key-value pairs are processed by a 
specific reducer.



You can control:

What goes inside of keys and values...

Startup/shutdown code for mapper/reducer 
instances...

Preservation of state within a mapper/reducer 
instance across multiple input keys...

Sort order of intermediate key/value pairs, and 
therefore the order that a reducer encounters its 
data.



What is MapReduce “bad” at:

Anything that involves random access through an 
entire data set.

Thought experiment: How would you go about 
extending the word count program to compute 
maximum likelihood frequency estimates?

Most difficult MapReduce programming 
problems involve working around this limitation.



Our cluster runs the “Hadoop” open-source 
MapReduce implementation.

Hadoop has its own implementation of GFS 
(called HDFS); our cluster has ≈14 TB of HDFS 
storage (total, not available!).



Hadoop jobs can be run in a variety of ways; the 
two main ones are:

1. A native Java API, and

2. “Streaming” mode, in which mappers and 
reducers can be written in any language with 
STDIN/STDOUT.



Hadoop has a web-based control panel, in 
addition to command-line tools:



Let’s do a real example!



About the pubmed corpus:

66 years of MEDLINE (1946–2012) references.

Titles, abstracts, index terms, authors, etc.

Stored in serialized JSON blobs.

Keys are PMIDs, values are JSON objects 
representing articles.

20.5 million articles.



Question: What’s the distribution of article title 
length like?

Let’s look at solving it using both the Java API and 
streaming mode.
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