
Stochastic Gradient Boosted Distributed Decision Trees

Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng
Yahoo! Labs

Sunnyvale, CA
{jerryye, jchow, jiangc, zhaohui}@yahoo-inc.com

ABSTRACT
Stochastic Gradient Boosted Decision Trees (GBDT) is one of the
most widely used learning algorithms in machine learning today. It
is adaptable, easy to interpret, and produces highly accurate mod-
els. However, most implementations today are computationally ex-
pensive and require all training data to be in main memory. As
training data becomes ever larger, there is motivation for us to par-
allelize the GBDT algorithm. Parallelizing decision tree training
is intuitive and various approaches have been explored in existing
literature. Stochastic boosting on the other hand is inherently a se-
quential process and have not been applied to distributed decision
trees. In this work, we present two different distributed methods
that generates exact stochastic GBDT models, the first is a MapRe-
duce implementation and the second utilizes MPI on the Hadoop
grid environment.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models; I.2.6
[Learning]: Concept Learning

General Terms
Algorithms

1. INTRODUCTION
Gradient tree boosting constructs an additive regression model,

utilizing decision trees as the weak learner [5]. Although it is ar-
guable for GBDT, decision trees in general have an advantage over
other learners in that it is highly interpretable. GBDT is also highly
adaptable and many different loss functions can be used during
boosting. More recently, adaptations of GBDT utilizing pairwise
and ranking specific loss functions have performed well at improv-
ing search relevance [2, 13]. In addition to its advantages in inter-
pretability, GBDT is able to model feature interactions and inher-
ently perform feature selection. Besides utilizing shallow decision
trees, trees in stochastic GBDT are trained on a randomly selected
subset of the training data and is less prone to over-fitting [6]. How-
ever, as we attempt to incorporate increasing numbers of features

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

and instances in training data and because existing methods require
all training data to be in physical memory, we focus our attention
on distributing the GBDT algorithm.

In this paper, we present a scalable distributed stochastic GBDT
algorithm that produces trees identical to those trained by the non-
distributed algorithm. Our distributed approach is also generaliz-
able to GBDT derivatives. We focus on stochastic boosting and
adapting the boosting framework to distributed decision tree learn-
ing. In our work, we explore two different techniques at paralleliz-
ing stochastic GBDT on Hadoop1. Both methods rely on improv-
ing the training time of individual trees and not on parallelizing
the actual boosting phase. Our initial attempt focused on an orig-
inal MapReduce implementation and our second approach utilizes
a novel way of launching MPI jobs on Hadoop.

2. RELATED WORK
Since decision trees were introduced by Qinlan [9], they have

become a highly successful learning model and are used for both
classification and regression. Friedman furthered the usage of de-
cision trees in machine learning with the introduction of stochastic
gradient boosted decision trees [6], using regression trees as weak
learners.

Existing literature has explored parallelization of decision trees,
but focused only on construction of single trees. In order to utilize
larger training sets, parallelization of decision tree learning gener-
ally fell into one of two areas. The first focused on approximate
methods to reduce training time [12]. The second approach parti-
tions the training data and distributes the computation of the best
split across multiple machines, aggregating splits to find a global
best split [10]. However, none of the methods have focused on dis-
tributed learning of stochastic gradient boosted decision trees.

3. BACKGROUND
Stochastic GBDT is an additive regression model consisting of

an ensemble of regression trees. Figure 1 shows a GBDT ensemble
of binary decision trees with an arrow showing possible paths that
a sample might traverse during testing. Each decision tree node is
a split on a feature at a specific value, with a branch for each of
the possible binary outcomes. Samples propagate through the tree
depending on its specific feature value and the split points of the
nodes that it visits. Each shaded terminal node returns a response
for the tree and the sum of the responses from the trees is the score
of the sample.

In our work, we utilize a Message Passing Interface (MPI) imple-
mentation from OpenMPI2 as well as MapReduce. MPI has been
in development for decades and works especially well for commu-
nication between machines. Recent work in grid computing such
1http://hadoop.apache.org
2http://www.openmpi.org

2061

as the Apache Hadoop project have allowed for large scale deploy-
ments of cheap, interchangeable compute nodes [4]. Hadoop is
an open source implementation of MapReduce [3] and it allows
for streaming jobs where users can specify tasks for each compute
node independent of MapReduce. In our work, we used MPI on
Hadoop directly by writing a customized launcher.

The next section describes how we distributed the training pro-
cess for stochastic GBDT.

Figure 1: A gradient boosted decision tree ensemble.

4. METHOD
In this section, we describe how to parallelize the stochastic GBDT

learning process. Chen et. al. [2] presented a good overview of
regression trees and gradient boosting in Section 3 of TRADA.
We describe various ways of partitioning the training data, our
MapReduce implementation, and finally our MPI implementation
on Hadoop. Before we proceed further, it is worth reiterating that
we are only interested in learning exact models. The models are
identical to those trained with the non-distributed version of the al-
gorithm. This guided us as we made important design decisions.
Alternatives to boosting and other tree ensemble methods such as
random forests [11] were not attempted for this reason.

4.1 Distributed Training Data
In order to parallelize our decision tree training process, we must

distribute the training data among machines. We are only interested
in methods that would partition the data onto different machines
rather than simply replicating it to reduce memory usage. There are
already several existing approaches to distributed tree construction
that aimed to improve scalability in terms of memory usage and
improving training performance [8]. Caregea et. al. outlined algo-
rithms for distributed tree training and presented different methods
for partitioning training data, either horizontally or vertically [1].
In our work, we distributed our data using both vertically and hori-
zontally partitioned methods.

4.2 MapReduce Implementation
Our initial implementation of distributed decision trees tried to

frame the problem in the MapReduce paradigm and used a hori-
zontal partitioning approach. Gehrke et. al. presented the concept
of aggregating attribute, value, class label pairs and we utilized this
in our MapReduce implementation [7]. Mappers would collect suf-
ficient statistics [1] for tree construction, where each computes the
candidate cutpoints by aggregating the unique attribute-value pairs.
Algorithm 1 details the mapper and reducer code for finding candi-
date split points. During the map phase, the sufficient statistics con-
sist of a key (f, v), containing the feature f and the feature value
v, and the corresponding value (ri, wi) consisting of the current
residual and the weight of sample i. The reduce phase aggregates
the residual and weight sums for each key. Given the output file, we
then perform a single pass over the sorted cutpoints and the global
best cut can be found.

This MapReduce method reduces the complexity of finding the
optimal cutpoint for each feature from the dimension of the number
of samples to the number of unique sample values. This method
scales particularily well on datasets with categorical or Boolean
features (e.g. click data). The entire process requires another map

Algorithm 1 Aggregating candidate splits

map(key, value):
F ⇐ set of features
sample ⇐ split(value,delim)
for f in F do

key = (f, sample[f])
value = (sample[residual], sample[weight])
emit(key, value)

end for

reduce(key, values):
residual_sum ⇐ 0
weight_sum ⇐ 0
for v in values do

residual_sum ⇐ residual_sum + v.residual
weight_sum ⇐ weight_sum + v.weight

end for
emit(key, (residual_sum,weight_sum))

Algorithm 2 Partitioning a Node n

map(key, value):
sample ⇐ split(value,delim)
if sample[n.feature] < n.splitpoint then

residual = sample[residual]+ n.left_response
else

residual = sample[residual]+ n.right_response
end if
emit(key, value)

task to partition the data for each node and a final one to apply the
current ensemble after training an entire tree. Algorithm 2 shows
pseudo code for updating the residuals for each sample. The par-
titioner writes samples out to different output files depending on
which side of the split the sample ends up. The applier code is
trivial to write in MapReduce and is omitted.

The MapReduce implementation is relatively straight forward to
implement and requires few lines of code. However, because we
essentially use HDFS for communication by writing out multiple
files when splitting a node, we suffer from high system overhead.
Hadoop is currently just not a good fit for this class of algorithms.
Due to high communication overhead, we shift the focus of the
remaining parts of this section to our MPI approach.

4.3 Learning a Distributed Regression Tree with
MPI on Hadoop

Our second approach tries to optimize communication by using
MPI on Hadoop streaming rather than MapReduce. For this im-
plementation, we chose vertical partitioning since it minimizes the
communication overhead of computing a tree node. For the rest
of the paper, we will be working with vertically partitioned data,
unless otherwise noted. Load balancing was performed to reduce
time spent waiting for stragglers. For our implementation, we used
our own MPI launcher for Hadoop.

4.3.1 MPI on Hadoop
In order to utilize existing Hadoop clusters, we modified Open-

MPI to launch using Hadoop streaming. The main advantage of
our approach is that we can use existing clusters without having
to build out a dedicated MPI cluster. Technical challenges such
as determining and communicating the master node, SSH-less job
launching, and fault tolerance had to be solved in the process.

2062

4.3.2 Finding the Best Split for a Node
The best split for a node is the split ci,j that maximizes gain(c)

across all unique cut points j and feature i ∈ F , where F is the set
of all features.

For vertical partitioning, each machine works on a subset of the
feature space FL and have only enough information to compute the
best local split S′

i,j for a unique cut point j and feature i ∈ FL.

S
′
i,j = argmaxi,j{gain(ci,j)}

Each machine computes the best gain among its subset of features
and sends this information to all of the other machines using an
MPI broadcast. Each machine then determines the global best split
S∗

i,j by aggregating the local splits from each machine and deter-
mining which split S′

i,j corresponds to the cut point c′i,j that maxi-
mizes gain.

S∗
i,j = argmaxi,j{gain(c′i,j)}

Every machine now knows the global best cut and waits for the
machine with the split feature in memory to partition its samples
and then transmit the updated post-split indices.

4.3.3 Partitioning the Data
During traditional decision tree construction, samples are parti-

tioned into two subsets after a split point is learned. In distributed
partitioning, only one machine has the feature in memory to parti-
tion the dataset. Therefore, only the machine with the best split can
partition the data, updating other machines after it is finished.

In stochastic GBDT, we start off with a random subset of the
training data for each tree. Since the targets for each sample in the
next tree is the gradient of the loss function, we need the current
score for every sample in the training set during boosting. This
poses a unique problem in the distributed case where we have to
apply the current ensemble on samples with features distributed
on multiple machines. To remedy this, we modify our partition
process to operate over all samples in the training data and maintain
an incremental score index

scorem(x) = scorem−1(x) +

JmX

j=1

γjmI(x ∈ Rjm)

where the current score at tree m depends on the score of the
sample from training the previous m − 1 trees, the indicator func-
tion, I and the response γjm of the corresponding region if x is in
region Rjm. Since the response is the residual mean of samples at
the inner nodes of the tree, we can incrementally update the score
index as we train new nodes. The additional overhead at each tree
is inversely linear with the sampling rate.

4.3.4 Finding the Best Node for Splitting
We employ the same greedy tree growing procedure that splits

the node with the highest gain among current leaf nodes. Although
this does not guarantee the optimal tree, it is an efficient linear pro-
cess and follows the method used in our non-distributed version.

Other tree growing methods can be implemented with additional
parallelism, such as growing by level, but in the interest of attaining
identical trees, we opted to use the greedy process.

4.4 Stochastic Gradient Boosting with
Distributed Decision Trees

Gradient Boosted Decision Trees is an additive regression model
consisting of numerous weak decision tree learners hi(x).

Hk(x) =

kX

i=1

γihi(x)

where γi denotes the learning rate. In Stochastic Gradient Boost-
ing, each weak learner hi(x) is trained on a subsample of the train-
ing data.

Normally, during sequential training, the target ti of sample xi

for the k-th tree is the gradient of the loss function L(yi, si), usu-
ally with parameters yi being the true label of the sample and the
score si = Hk−1(xi). The loss function could be as generic as
least squares or as specialized as GBRank [13].

A unique challenge occurs when training distributed decision
trees where data is partitioned across multiple nodes. Since the
loss function depends on the score of every sample in the training
data for the ensemble thus far, we need to retrieve non-local fea-
ture values from other machines or keep track of the sample score
throughout training. Our method implements the latter to minimize
communication between machines. Therefore, during training, we
modify our applier function to be

Hk(x) = sk(x)

where sk(x) is the index described in Section 4.3.3, with s0(x) =
0. Boosting then follows as shown below:

1. Randomly sample the training data with replacement to get
subset Sk.

2. Set the target ri of examples in Sk to be ri = L(yi, sk(xi))
where yi is the true label of the sample

3. Train the k-th tree hk(x) with the samples (xi, ri), where
xi ∈ Sk.

5. EXPERIMENTS
This section overviews the results of our experiments. Since our

distributed GBDT construction process is designed to produce ex-
actly the same results as the non-distributed version, we do not need
to evaluate for differences in accuracy between learned models. We
focus solely on evaluating performance and scalability of our sys-
tems. We first describe our dataset and experimental setup, then the
results of our MapReduce implementation. Finally, we discuss the
results of our implementation utilizing MPI on Hadoop.

5.1 Experimental Setup
Our experiments focused on evaluating the scalability of our sys-

tems when more machines are added to the process or when the
feature or sample size is varied. All runs were made on a Hadoop
cluster with only the number of machines allocated as needed.

The dataset D used in our experiments consisted of 1.2 million
(query, uri, grade) samples with 520 numeric features. To stress
the system, we randomly generated, while respecting the existing
feature distributions, additional datasets that were multiples of the
dimension of D.

5.2 Experimental Results

5.2.1 MapReduce Implementation
Figure 2 is a log-log plot of training times for training a decision

tree node. For each of the datasets, we trained a tree and aver-
aged the training time for splitting a node, partitioning the samples,
and updating the residuals for its children. As expected, the larger

2063

 1000

 500

 100

 5
 100 50 10 5

T
ra

in
in

g
T

im
e

(s
ec

on
ds

)

Number of Machines

1.2 Million
150K

Figure 2: Training time per node using the MapReduce implementation
shown in log scale.

dataset saw the largest improvement in training time as more map-
pers were added. Due to communication overhead, there were no
further performance gains on the smaller dataset after 50 machines
were used.

Communication costs were the main concern with this imple-
mentation. We discovered that this process was restricted by high
cost of communication across HDFS (Hadoop currently does not
have support for inter-node communication). Scheduling of multi-
ple MapReduce jobs also proved to be a costly proposition. Given
these factors, we were looking at minutes per node. This implemen-
tation was actually slower than the non-distributed version. From
our results, we believe that MapReduce is simply not a good fit
for communications heavy algorithms such as GBDT and highly
iterative machine learning algorithms in general.

Although our MapReduce implementation scales well with even
larger datasets, we were primarily interested in improving over-
all training time and changed our focus to using MPI on Hadoop.
Comparatively, the MPI implementation trains an entire 20 termi-
nal node tree in only 9 seconds with 20 machines on the 1.2M sam-
ple dataset while the MapReduce implementation took 273 seconds
to train a single node with 100 machines.

5.2.2 MPI Implementation.
To evaluate the scalability of our MPI system, we used three dif-

ferent datasets of varying sizes consisting of 1.2 million samples,
500K samples, and 100K samples each. There were 520 features
across all three datasets. For each dataset, we learned 10 trees with
each tree trained until there were 20 leaf nodes. We repeated this
experiment multiple times as we varied the number of machines
during our distributed training process.

Figure 3 shows a log-log plot of the average training time as
a function of the number of machines. The graph shows that the
speedups depend on the size of the training data and that improve-
ments start to taper off as more machines are added. In our dataset
with 100K samples, the overhead from distributed tree training was
too high for our implementation to be useful. For the 500K dataset,
training time was reduced in half after using 2 machines but contin-
ued to improve sub-linearly until 5 machines were used and having
no further improvements from additional machines.

The biggest advantage to using our implementation came with
the larger 1.2 million sample dataset. We see that training time
is halved by adding an additional machine and that improvements
continue up to 20 machines with the final improvement from 70
seconds per tree to 9 seconds per tree. Figure 3 appears to indicate
that we should be able to obtain even better scaling as our dataset
grows larger.

We gained a lot in terms of performance using the MPI approach,
but we lost some of the scalability afforded to us in the MapReduce

implementation. Because we focused on minimizing inter-machine
communication, we decided to go with a vertical partitioning of
our dataset. Although most datasets have many features and will
benefit from the scalability of this implementation, we do reach an
upper limit when the size of one feature cannot fit in main memory
on one machine.

 1

 10

 20 10 5 4 3 2 1

T
ra

in
in

g
T

im
e

(s
ec

on
ds

)

Number of Machines

1.2 Million
500K
100K

Figure 3: Average training time per tree over 10 trees shown in log scale.

6. CONCLUSIONS
We have shown two different methods of parallelizing stochastic

gradient boosted decision trees. Our first implementation follows
the MapReduce paradigm and ran on Hadoop. This approach re-
quired a very limited amount of code and scaled well. However,
communication costs of reading from HDFS was too expensive for
this method to be useful. In fact, it was slower than the sequential
version. We believe that the main factor behind the results was that
our communication intensive implementation is not well suited for
the MapReduce paradigm. Our second method utilizes MPI and
Hadoop streaming to run on the grid. This approach proved to be
successful, obtained near ideal speedups, and scales well with large
datasets.

7. REFERENCES
[1] CARAGEA, D., SILVESCU, A., AND HONAVAR, V. A framework for learning

from distributed data using sufficient statistics and its application to learning
decision trees. International Journal of Hybrid Intelligent Systems 1, 2 (2004).

[2] CHEN, K., LU, R., WONG, C. K., SUN, G., HECK, L., AND TSENG, B. L.
Trada: tree based ranking function adaptation. In CIKM (2008), pp. 1143–1152.

[3] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data processing on
large clusters. Commun. ACM 51, 1 (2008), 107–113.

[4] FOUNDATION, A. Apache hadoop project. lucene.apache.org/hadoop.
[5] FRIEDMAN, J. H. Greedy function approximation: A gradient boosting

machine. Annals of Statistics 29 (2001), 1189–1232.
[6] FRIEDMAN, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 4

(February 2002), 367–378.
[7] GEHRKE, J., RAMAKRISHNAN, R., AND GANTI, V. Rainforest - a framework

for fast decision tree construction of large datasets. In VLDB’98, Proceedings of
24rd International Conference on Very Large Data Bases, August 24-27, 1998,
New York City, New York, USA (1998), A. Gupta, O. Shmueli, and J. Widom,
Eds., Morgan Kaufmann, pp. 416–427.

[8] PROVOST, F., KOLLURI, V., AND FAYYAD, U. A survey of methods for
scaling up inductive algorithms. Data Mining and Knowledge Discovery 3
(1999), 131–169.

[9] QUINLAN, J. R. Induction of decision trees. In Machine Learning (1986),
pp. 81–106.

[10] SHAFER, J. C., AGRAWAL, R., AND 0002, M. M. Sprint: A scalable parallel
classifier for data mining. In VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India (1996), T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and
N. L. Sarda, Eds., Morgan Kaufmann, pp. 544–555.

[11] STATISTICS, L. B., AND BREIMAN, L. Random forests. In Machine Learning
(2001), pp. 5–32.

[12] SU, J., AND ZHANG, H. A fast decision tree learning algorithm. In AAAI
(2006).

[13] ZHENG, Z., CHEN, K., SUN, G., AND ZHA, H. A regression framework for
learning ranking functions using relative relevance judgments. Proceedings of
the 30th annual international ACM SIGIR conference on Research and
development in information retrieval (2007), 287–294.

2064

