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Abstract. Spectral clustering algorithm has been shown to be more
effective in finding clusters than most traditional algorithms. However,
spectral clustering suffers from a scalability problem in both memory use
and computational time when a dataset size is large. To perform clus-
tering on large datasets, we propose to parallelize both memory use and
computation on distributed computers. Through an empirical study on
a large document dataset of 193, 844 data instances and a large photo
dataset of 637, 137, we demonstrate that our parallel algorithm can ef-
fectively alleviate the scalability problem.
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1 Introduction

Clustering is one of the most important subroutine in tasks of machine learning
and data mining. Recently, spectral clustering methods, which exploit pairwise
similarity of data instances, have been shown to be more effective than tradi-
tional methods such as k-means, which considers only the similarity to k centers.
(We denote k as the number of desired clusters.) Because of its effectiveness in
finding clusters, spectral clustering has been widely used in several areas such as
information retrieval and computer vision. Unfortunately, when the number of
data instances (denoted as n) is large, spectral clustering encounters a quadratic
resource bottleneck in computing pairwise similarity between n data instances
and storing that large matrix. Moreover, the algorithm requires considerable
computational time to find the smallest k eigenvalues of a Laplacian matrix.

Several efforts have attempted to address aforementioned issues. Fowlkes et
al. propose using the Nyström approximation to avoid calculating the whole
similarity matrix [8]. That is, they trade accurate similarity values for shortened
computational time. Dhillon et al. [4] assume the availability of the similarity
matrix and propose a method that does not use eigenvectors. Although these
methods can reduce computational time, they trade clustering accuracy for com-
putational speed gain, or they do not address the bottleneck of memory use. In
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Table 1. Notations. The following notations are used in the paper.

n number of data
d dimensionality of data
k number of desired clusters
p number of nodes (distributed computers)
t number of nearest neighbors
m Arnoldi length in using an eigensolver
x1, . . . , xn ∈ Rd data points
S ∈ Rn×n similarity matrix
L ∈ Rn×n Laplician matrix
v1, . . . , vk ∈ Rn first k eigenvectors of L
V ∈ Rn×k eigenvector matrix
e1, . . . , ek ∈ Rn cluster indicator vectors
E ∈ Rn×k cluster indicator matrix
c1, . . . , ck ∈ Rn cluster centers of k-means

this paper, we parallelize spectral clustering on distributed computers to address
resource bottlenecks of both memory use and computation time. Parallelizing
spectral clustering is much more challenging than parallelizing k-means, which
was performed by e.g., [2, 5, 25].

Our parallelization approach first distributes n data instances onto p dis-
tributed machine nodes. On each node, we then compute the similarities be-
tween local data and the whole set in a way that uses minimal disk I/O. These
two steps, together with parallel eigensolver and distributed tuning of parame-
ters (including σ of the Gaussian function and the initial k centers of k-means),
speed up clustering time substantially. Our empirical study validates that our
parallel spectral clustering outperforms k-means in finding quality clusters and
that it scales well with large datasets.

The remainder of this paper is organized as follows: In Section 2, we present
spectral clustering and analyze its memory and computation bottlenecks. In
Section 3, we show some obstacles for parallelization and propose our solutions
to work around the challenges. Experimental results in Section 4 show that
our parallel spectral clustering algorithm achieves substantial speedup on 128
machines. The resulting cluster quality is better than that of k-means. Section 5
offers our concluding remarks.

2 Spectral Clustering

We present the spectral clustering algorithm in this section so as to understand
the bottlenecks of its resources. To assist readers, Table 1 defines terms and
notations used throughout this paper.
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2.1 Basic Concepts

Given n data points x1, . . . ,xn, the spectral clustering algorithm constructs a
similarity matrix S ∈ Rn×n, where Sij ≥ 0 reflects the relationships between xi

and xj . It then uses the similarity information to group x1, . . . ,xn into k clusters.
There are many variants of spectral clustering. Here we consider a commonly
used normalized spectral clustering [19]. (For a complete account of all variants,
please see [17].) An example similarity function is the Gaussian:

Sij = exp
�
−�xi − xj�2

2σ2

�
. (1)

In our implementation, we use an adaptive approach to decide the parameter
σ2 (details are presented in Section 3.4). For conserving computational time,
one often reduces the matrix S to a sparse one by considering only significant
relationship between data instances. For example, we may retain Sij satisfying
that j (or i) is among the t-nearest neighbors of i (or j). Typically t is a small
number (e.g., t a small fraction of n or t = log n)1.

Consider the normalized Laplacian matrix [3]:

L = I −D−1/2SD−1/2, (2)

where D is a diagonal matrix with

Dii =
n�

j=1

Sij .

In the ideal case, where data in one cluster are not related to those in others,
non-zero elements of S (and hence L) only occur in a block diagonal form:

L =




L1

. . .
Lk



 .

It is known that L has k zero eigenvalues, which are also the k smallest ones [17,
Proposition 4]. Their corresponding eigenvectors, written as an Rn×k matrix,
are

V = [v1,v2, . . . ,vk] = D1/2E, (3)

where vi ∈ Rn×1, i = 1, . . . , k.

E =




e1

. . .
ek



 , (4)

1 Another simple strategy for making S a sparse matrix is to zero out those Sij

larger than a pre-specified threshold. Since the focus of this paper is on speeding up
spectral clustering, we do not compare different methods to make a matrix sparse.
Nevertheless, our empirical study shows that the t-nearest-neighbor approach yields
good results.
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Algorithm 1 Spectral Clustering
Input: Data points x1, . . . , xn; k: number of clusters to construct.

1. Construct similarity matrix S ∈ Rn×n.
2. Modify S to be a sparse matrix.
3. Compute the Laplacian matrix L by Eq. (2).
4. Compute the first k eigenvectors of L; and construct V ∈ Rn×k, which columns

are the k eigenvectors.
5. Compute the normalized matrix U of V by Eq. (5).
6. Use k-means algorithm to cluster n rows of U into k groups.

where ei, i = 1, . . . , k (in different length) are vectors of all ones. As D1/2E has
the same structure as E, simple clustering algorithms such as k-means can easily
cluster the n rows of V into k groups. Thus, what one needs is to find the first k
eigenvectors of L (i.e., eigenvectors corresponding to the k smallest eigenvalues).
However, practically eigenvectors we obtained are in the form of

V = D1/2EQ,

where Q is an orthogonal matrix. Ng et al. [19] propose normalizing V so that

Uij =
Vij��k
r=1

V 2

ir

, i = 1, . . . , n, j = 1, . . . , k. (5)

The row sum of U is one. Due to the orthogonality of Q, (5) is equivalent to

U = EQ =





Q1,1:k
...

Q1,1:k

Q2,1:k
...




, (6)

where Qi,1:k indicates the ith row of Q. Then U ’s n rows correspond to k or-
thogonal points on the unit sphere. The n rows of U can thus be easily clustered
by k-means or other simple clustering algorithms. A summary of the method is
presented in Algorithm 1.

Instead of analyzing properties of the Laplacian matrix, spectral clustering
algorithms can be derived from the graph cut point of view. That is, we partition
the matrix according to the relationship between points. Some representative
graph-cut methods are Normalized Cut [20], Min-Max Cut [7] and Radio Cut [9].

2.2 Computational Complexity and Memory Usage

Let us examine computational cost and the memory use of Algorithm 1. We
omit discussing some inexpensive steps.
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Construct the similarity matrix. Assume each Sij involves at least an inner
product between xi and xj . The cost of obtaining an Sij is O(d), where d is the
dimensionality of data. Constructing similarity matrix S requires

O(n2d) time and O(n2) memory. (7)

To make S a sparse matrix, we employ the approach of t-nearest neighbors
and retain only Sij where i (or j) is among the t-nearest neighbors of j (or i).
By scanning once of Sij for j = 1, . . . , n and keeping a max heap with size t,
we sequentially insert the similarity that is smaller than the maximal value of
the heap and then restructure the heap. Thus, the complexity for one point xi

is O(n log t) since restructuring a max heap is in the order of log t. The overall
complexity of making the matrix S to sparse is

O(n2 log t) time and O(nt) memory. (8)

Compute the first k eigenvectors. Once that S is sparse, we can use sparse
eigensolvers. In particular, we desire a solver that can quickly obtain the first k
eigenvectors of L. Some example solvers are [11, 13] (see [10] for a comprehensive
survey). Most existing approaches are variants of the Lanczos/Arnoldi factor-
ization. We employ a popular eigensolver ARPACK [13] and its parallel version
PARPACK [18]. ARPACK implements an implicitly restarted Arnoldi method.
We briefly describe its basic concepts hereafter; more details can be found in the
user guide of ARPACK. The m-step Arnoldi factorization gives that

LV = V H + (a matrix of small values), (9)

where V ∈ Rn×m and H ∈ Rm×m satisfy certain properties. If the “matrix of
small values” in (9) is indeed zero, then V ’s m columns are L’s first m eigenvec-
tors. Therefore, (9) provides a way to check how good we approximate eigenvec-
tors of L. To perform this check, one needs all eigenvalues of the dense matrix
H, a procedure taking O(m3) operations. For quickly finding the first k eigen-
vectors, ARPACK employs an iterative procedure called “implicitly restarted”
Arnoldi. Users specify an Arnoldi length m > k. Then at each iteration (restarted
Arnoldi) one uses V and H of the previous iteration to conduct the eigendecom-
position of H, and finds a new Arnoldi factorization. Each Arnoldi factorization
involves at most (m− k) steps, where each step’s main computational complex-
ity is O(nm) for a few dense matrix-vector products and O(nt) for a sparse
matrix-vector product. In particular, O(nt) is for

Lv, (10)

where v is an n× 1 vector. As on average the number of nonzeros per row of L
is O(t), the cost of this sparse matrix multiply is O(nt).

Based on the above analysis, the overall cost of ARPACK is
�
O(m3) + (O(nm) + O(nt))×O(m− k)

�
× (# restarted Arnoldi), (11)
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where O(m− k) is a value no more than m− k. Obviously, the value m selected
by users affects the computational time. One often sets m to be several times
larger than k. The memory requirement of ARPACK is O(nt)+O(nm).
k-means to cluster the normalized matrix U . Algorithm k-means aims at
minimizing the total intra-cluster variance, which is the squared error function
in the spectral space:

J =
k�

i=1

�

uj∈Ci

||uj − ci||2. (12)

We assume that data are in k clusters Ci, {i = 1, 2, . . . , k}, and ci ∈ Rk×1 is
the centroid of all the points uj ∈ Ci. Similar to Step 5 in Algorithm 1, we also
normalize centers ci to be of unit length.

The traditional k-means algorithm employs an iterative procedure. At each
iteration, we assign each data point to the cluster of its nearest center, and
recalculate cluster centers. The procedure stops after reaching a stable error
function value. Since the algorithm evaluates the distance between any point
and the current k cluster centers, the time complexity of k-means is

O(nk2)×# k-means iterations. (13)

Overall analysis. The step that consumes the most memory is constructing the
similarity matrix. For instance, n = 600, 000 data instances, assuming double
precision storage, requires 2.8 Tera Bytes of memory, which is not available
on a general-purpose machine. Since we make S sparse, O(nt) memory space
may suffice. However, if n is huge, say in billions, no single general-purpose
machine can handle such a large memory requirement. Moreover, the O(n2d)
computational time in (7) is a bottleneck. This bottleneck has been discussed in
earlier work. For example, the authors of [16] state that “The majority of the
time is actually spent on constructing the pairwise distance and affinity matrices.
Comparatively, the actually clustering is almost negligible.”

3 Parallel Spectral Clustering

Based on the analysis performed in Section 2.2, it is essential to conduct spectral
clustering in a distributed environment to alleviate both memory and computa-
tional bottlenecks. In this section, we discuss these challenges and then propose
our solutions. We implement our system on a distributed environment using
Message Passing Interface (MPI) [22].

3.1 Similarity Matrix and Nearest Neighbors

Suppose p machines (or nodes) are allocated in a distributed environment for our
target clustering task. Figure 1 shows that we first let each node construct n/p
rows of the similarity matrix S. We illustrate our procedure using the first node,
which is responsible for rows 1 to n/p. To obtain the ith row, we use Eq. (1) to
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n

n/p

n/p

n/p

n n

Fig. 1. The similarity matrix is distributedly stored in multiple machines.

n/p

d

× d

n/p� n/p� n/p�

Fig. 2. Calculating n/p rows of the similarity at a node. We use matrix-matrix products
for inner products between n/p points and all data x1, . . . , xn. As data cannot be loaded
into memory, we separate x1, . . . , xn into p� blocks.

calculate the similarity between xi and all the data points, respectively. Using
�xi − xj�2 = �xi�2 + �xj�2 − 2xT

i xj to compute similarity between instances
xi and xj , we can precompute �xi�2 for all instances and cache on all nodes to
conserve time.

Let X = [x1, . . . ,xn] ∈ Rd×n and X1:n/p = [x1, . . . ,xn/p]. One can perform
a matrix-matrix product to obtain XT

1:n/pX. If the memory of a node cannot
store the entire X, we can split X into p� blocks as shown in Figure 2. When
each of the p� blocks is memory resident, we multiply it and XT

1:n/p.
When data are densely stored, even if X can fit into the main memory,

splitting X into small blocks takes advantage of optimized BLAS (Basic Linear
Algebra Subroutines) [1]. BLAS places the inner-loop data instances in CPU
cache and ensures their cache residency. Table 2 compares the computational
time with and without BLAS. It shows that blocking operation can reduce the
computational time significantly.

3.2 Parallel Eigensolver

After we have calculated and stored the similarity matrix, it is important to
parallelize the eigensolver. Section 3.1 shows that each node now stores n/p rows
of L. For the eigenvector matrix V (see (3)) generated during the call to ARPACK,
we also split it into p partitions, each of which possesses n/p rows. As mentioned
in Section 2.2, major operations at each step of the Arnoldi factorization include
a few dense and a sparse matrix-vector multiplications, which cost O(mn) and
O(nt), respectively. We parallelize these computations so that the complexity of
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L × v

Fig. 3. Sparse matrix-vector multiplication. We assume p = 5 here. L and v are re-
spectively separated to five block partitions.

Table 2. Computational time (in seconds) for the similarity matrix (n = 637, 137 and
number of features d = 144).

1 machine without BLAS 1 machine with BLAS 16 machines with BLAS

3.14× 105 6.40× 104 4.00× 103

finding eigenvectors becomes:
�

O(m3) + (O(
nm

p
) + O(

nt

p
))×O(m− k)

�
× (# restarted Arnoldi). (14)

Note that communication overhead between nodes occurs in the following three
situations:

1. Sum p values and broadcast the result to p nodes.
2. Parallel sparse matrix-vector product (10).
3. Dense matrix-vector product: Sum p vectors of length m and broadcast the

resulting vector to all p nodes.

The first and the third cases transfer only short vectors, but the sparse ma-
trix vector product may move a larger vector v ∈ Rn to several nodes. We
next discuss how to conduct the parallel sparse matrix-vector product to reduce
communication cost.

Figure 3 shows matrix L and vector v. Suppose p = 5. The figure shows that
both L and v are horizontally split into 5 parts and each part is stored on one
computer node. Take node 1 as an example. It is responsible to perform

L1:n/p,1:n × v, (15)

where v = [v1, . . . , vn]T ∈ Rn. L1:n/p,1:n, the first n/p rows of L, is stored at
node 1, but only v1, . . . , vn/p are available at node 1. Hence other nodes must
send to node 1 the elements vn/p+1, . . . , vn. Similarly, node 1 should dispatch its
v1, . . . , vn/p to other nodes. This task is a gather operation in MPI: data at each
node are gathered on all nodes. We apply this MPI operation on distributed
computers by following the techniques in MPICH22 [24], a popular implemen-
tation of MPI. The communication cost is O(n), which cannot be reduced as a
node must get n/p elements from the other p− 1 nodes.
2 http://www.mcs.anl.gov/research/projects/mpich2
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Further reducing the communication cost is possible only we reduce n to a
fraction of n by taking the sparsity of L into consideration. The reduction of the
communication cost depends on the sparsity and the structure of the matrix.
We defer this optimization to future investigation.

3.3 Parallel k-means

After the eigensolver computes the first k eigenvectors of Laplacian, the matrix
V is distributedly stored. Thus the normalized matrix U can be computed in
parallel and stored on p local machines. Each row of the matrix U is regarded
as one data point in the k-means algorithm. To start the k-means procedure,
the master machine chooses a set of initial cluster centers and broadcasts them
to all machines. (See next section for our distributed initialization procedure.)
At each node, new labels of its data are assigned and local sums of clusters are
calculated without any inter-machine communication. The master machine then
obtains the sum of all points in each cluster to calculate new centers. The loss
function (12) can also be computed in parallel in a similar way. Therefore, the
computational time of parallel k-means is reduced to 1/p of that in (13). The
communication cost per iteration is on broadcasting k centers to all machines. If
k is not large, the total communication cost is usually smaller than that involved
in finding the first k eigenvectors.

3.4 Other Implementation Details

We discuss two implementation issues of the parallel spectral clustering algo-
rithm. The first issue is that of assigning parameters in Gaussian function (1),
and the second is initializing the centers for k-means.
Parameters in Gaussian function. We adopt the self-tuning technique [27]
to adaptively assign the parameter σ in (1). The original method used in [27] is

Sij = exp
�
−||xi − xj ||2

2σiσj

�
. (16)

Suppose xi has t nearest neighbors. If we sort these neighbors in ascending
order, σi is defined as the distance between xi and xit , the �t/2�th neighbor of
xi: σi = ||xi−xit ||. Alternatively, we can consider the average distance between
xi and its t nearest neighbors3. In a parallel environment, each local machine first
computes σi’s of its local data points. Then σi’s are gathered on all machines.
Initialization of k-means. Revisit (6). In the ideal case, the centers of data in-
stances calculated based on the matrix U are orthogonal to each other. Thus, an
intuitive initialization of centers can be done by selecting a subset of {x1, . . . ,xn}
whose elements are almost orthogonal [26]. To begin, we use the master machine
to randomly choose a point as the first cluster center. Then it broadcasts the
center to all machines. Each machine identifies the most orthogonal point to this
3 In the experiments, we use the average distance as our self-tuning parameters.
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center by finding the minimal cosine distance between its points and the center.
By gathering the information of different machines, we choose the most orthog-
onal point to the first center as the second center. This procedure is repeated
to obtain k centers. The communication involved in the initialization includes
broadcasting k cluster centers and gathering k × p minimal cosine distances.

4 Experiments

We designed our experiments to validate the quality of parallel spectral clus-
tering and its scalability. Our experiments used two large datasets: 1) RCV1
(Reuters Corpus Volume I), a filtered collection of 193, 844 documents, and 2)
637, 137 photos collected from PicasaWeb, a Google photo sharing product. We
ran experiments on up to 256 machines at our distributed data centers. While not
all machines are identical, each machine was configured with a CPU faster than
2GHz and memory larger than 4GBytes. All reported results are the average of
nine runs.

4.1 Clustering Quality

To check the performance of spectral clustering algorithm, we compare it with
traditional k-means. We looked for a dataset with ground truth. RCV1 is an
archive of 804, 414 manually categorized newswire stories from Reuters Ltd [14].
The news documents are categorized with respect to three controlled vocabular-
ies: industries, topics and regions. Data were split into 23, 149 training documents
and 781, 256 test documents. In this experiment, we used the test set and cate-
gory codes based on the industries vocabulary. There are originally 350 categories
in the test set. For comparing clustering results, data which are multi-labeled
were not considered, and categories which contain less than 500 documents were
removed. We obtained 193, 844 documents and 103 categories. Each document
is represented by a cosine normalization of a log transformed TF-IDF (term
frequency, inverse document frequency) feature vector.

For both spectral and k-means, we set the number of clusters to be 103, and
Arnoldi space dimension m to be two times the number of clusters. We used the
document categories in the RCV1 dataset as the ground truth for evaluating clus-
ter quality. We measured quality via using the Normalized Mutual Information
(NMI) between the produced clusters and the ground-truth categories.

NMI between two random variables CAT (category label) and CLS (cluster
label) is defined as NMI(CAT; CLS) = I(CAT; CLS)√

H(CAT)H(CLS)
, where I(CAT; CLS) is

the mutual information between CAT and CLS. The entropies H(CAT) and
H(CLS) are used for normalizing the mutual information to be in the range of
[0, 1]. In practice, we made use of the following formulation to estimate the NMI
score [23]:

NMI =

�k
i=1

�k
j=1

ni,j log
�

n·ni,j

ni·nj

�

���
i ni log ni

n

� ��
j nj log nj

n

� , (17)
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Table 3. NMI comparisons for k-means, spectral clustering with 100 nearest neighbors.

Algorithms E-k-means S-k-means Spectral Clustering

NMI 0.2586(±0.0086) 0.2702(±0.0059) 0.2875(±0.0011)

where n is the number of documents, ni and nj denote the number of docu-
ments in category i and cluster j, respectively, and ni,j denotes the number
of documents in category i as well as in cluster j. The NMI score is 1 if the
clustering results perfectly match the category labels, and the score is 0 if data
are randomly partitioned. The higher this NMI score, the better the clustering
quality.

We compared k-means algorithm based on Euclidean distance (E-k-means),
spherical k-means based on cosine distance (S-k-means) [6], and our parallel
spectral clustering algorithm using 100 nearest neighbors. Table 3 reports that
parallel spectral clustering algorithm outperforms E-k-means and S-k-means.
This result confirms parallel spectral clustering to be effective in finding clusters.

4.2 Scalability: Runtime Speedup

We used both the RCV1 dataset and a PicasaWeb dataset to conduct a scala-
bility experiment. The RCV1 can fit into main memory of one machine, whereas
the PicasaWeb dataset cannot. PicasaWeb is an online platform for users to up-
load, share and manage images. The PicasaWeb dataset we collected consists of
637, 137 images accompanied with 110, 342 tags.

For each image, we extracted 144 features including color, texture, and shape
as its representation [15]. In the color channel, we divided color into 12 color bins
including 11 bins for culture colors and one bin for outliers [12]. For each color
bin, we recorded nine features to capture color information at finer resolution.
The nine features are color histogram, color means (in H, S, and V channels),
color variances (in H, S, and V channels), and two shape characteristics: elonga-
tion and spreadness. Color elongation defines the shape of color, and spreadness
defines how the color scatters within the image. In the texture channel, we em-
ployed a discrete wavelet transformation (DWT) using quadrature mirror filters
[21] due to its computational efficiency. Each DWT on a image yielded four
subimages including scale-down image and its wavelets in three orientations. We
then obtained nine texture combinations from subimages of three scales (coarse,
medium, fine) and three orientations (horizontal, vertical, diagonal). For each
texture, we recorded four features: energy mean, energy variance, texture elon-
gation and texture spreadness.

We first report the speedup on the RCV1 dataset in Table 4. As discussed
in Section 3.1, the computation of similarity matrix can achieve linear speedup.
In this experiment, we focus on the time of finding the first k eigenvectors and
conducting k-means. Here the k-means is referred to Step 6 in Algorithm 1.
It is important to notice that we could not ensure the quiesce of the allocated
machines at Google’s distributed data centers. There were almost always other
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Table 4. RCV1 data set. Runtime comparisons for different number of machines.
n=193,844, k=103, m=206.

Eigensolver k-means
Machines Time (sec.) Speedup Time (sec.) Speedup

1 9.90× 102 1.00 4.96× 101 1.00
2 4.92× 102 2.01 2.64× 101 1.88
4 2.83× 102 3.50 1.53× 101 3.24
8 1.89× 102 5.24 1.10× 101 4.51
16 1.47× 102 6.73 9.90× 100 5.01
32 1.29× 102 7.67 1.05× 101 4.72
64 1.30× 102 7.62 1.34× 101 3.70

jobs running simultaneously with ours on each machine. Therefore, the runtime
is partially dependent on the slowest machine being allocated for the task. (We
consider an empirical setting like this to be reasonable, since no modern machine
is designed or expected to be single task.) When 32 machines were used, the par-
allel version of eigensolver achieved 7.67 times speedup. When more machines
were used, the speedup actually decreased. Similarly, we can see that paralleliza-
tion sped up k-means more than five times when 16 machines were used. The
speedup is encouraging. For a not-so-large dataset like RCV1, the Amdahl’s law
kicks in around p = 16. Since the similarity matrix in this case is not huge, the
communication cost dominates computation time, and hence further increasing
machines does not help. (We will see next that the larger a dataset, the higher
speedup our parallel implementation can achieve.)

Next, we looked into the speedup on the PicasaWeb dataset. We grouped
the data into 1, 000 clusters, where the corresponding Arnoldi space is set to be
2, 000. Note that storing the eigenvectors in Arnoldi space with 2, 000 dimensions
requires 10GB of memory. This memory configuration is not available on off-
the-shelf machines. We had to use at least two machines to perform clustering.
We thus used two machines as the baseline and assumed the speedup of two
machines is 2. This assumption is reasonable since we will see shortly that our
parallelization can achieve linear speedup on up to 32 machines.

Table 5 reports the speedups of eigensovler and k-means. We can see in the
table that both eigensolver and k-means enjoy near-linear speedups when the
number of machine is up to 32. For more than 32 machines, the speedups of
k-means are better than that of eigensolver. However both speedups became
sublinear as the synchronization and communication overheads started to slow
down the speedups. The “saturation” point on the PicasaWeb dataset is p = 128
machines. Using more than 128 machines is counter-productive to both steps.

From the experiments with RCV1 and PicasaWeb, we can observe that the
larger a dataset, the more machines can be employed to achieve higher speedup.
Since several computation intensive steps grow faster than the communication



Parallel Spectral Clustering 13

Table 5. Picasa data set. Runtime comparisons for different numbers of machines.
n=637,137, k=1,000, m=2,000.

Eigensolver k-means
Machines Time (sec.) Speedup Time (sec.) Speedup

1 − − − −
2 8.074× 104 2.00 3.609× 104 2.00
4 4.427× 104 3.65 1.806× 104 4.00
8 2.184× 104 7.39 8.469× 103 8.52
16 9.867× 103 16.37 4.620× 103 15.62
32 4.886× 103 33.05 2.021× 103 35.72
64 4.067× 103 39.71 1.433× 103 50.37
128 3.471× 103 46.52 1.090× 103 66.22
256 4.021× 103 40.16 1.077× 103 67.02

cost, the larger the dataset is, the more opportunity is available for parallelization
to gain speedup.

Figure 4 shows sample clusters generated by k-means and spectral clustering.
The top two rows are clusters generated by k-means, the bottom two rows are
by spectral clustering. First, spectral clustering finds lions and leopards more
effectively. Second, in the flower cluster, spectral clustering can find flowers of
different colors, whereas k-means is less effective in doing that. Figure 5 provides
a visual comparison of the clustering results produced by four different cluster-
ing schemes (of ours). On the top is our parallel k-means. Rows 2 to 4 display
results of using parallel spectral clustering with different tag weighting settings
(α). In addition to perceptual features, tags are useful for image searching and
clustering. We use the tag weighting factor α to incorporate tag overlapping
information in constructing the similarity matrix. The more tags are overlapped
between images, the larger the similarity between the images. When the tag
weighting factor is set to zero, spectral clustering considers only the 144 percep-
tual features depicted in the beginning of this section. When tag information is
incorporated, we can see that the clustering performance improves. Though we
cannot use one example in Figure 5 to prove that the spectral clustering algo-
rithm is always superior to k-means, thanks to the kernel, spectral clustering
seems to be more effective in identifying clusters of non-linear boundaries (such
as photo clusters).

5 Conclusions

In this paper, we have shown our parallel implementation of the spectral cluster-
ing algorithm to be both correct and scalable. No parallel algorithm can escape
from the Amdahl’s law, but we showed that the larger a dataset, the more ma-
chines can be employed to use parallel spectral clustering algorithm to enjoy
fast and high-quality clustering performance. We plan to enhance our work to
address a couple of research issues.
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(a) Sample images of k-means.

(b) Sample images of spectral clustering.

Fig. 4. Clustering results of k-means and spectral clustering.

(a) Sample images of k-means clustering.

(b) Sample images of spectral clustering with tag weighting factor α = 0.0.

(c) Sample images of spectral clustering with tag weighting factor α = 0.5.

(d) Sample images of spectral clustering with tag weighting factor α = 1.0.

Fig. 5. Clustering results of k-means and spectral clustering. The cluster topic is “base-
ball game.”
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Nyström method. Though the Nyström method [8] enjoys a better speed and
effectively handles the memory difficulty, our preliminary result shows that its
performance is slightly worse than our method here. Due to space limitations,
we will detail further results in future work.
Very large number of clusters. A large k implies a large m in the process
of Arnoldi factorization. Then O(m3) for finding the eigenvalues of the dense
matrix H becomes the dominant term in (11). How to efficiently handle the case
of large k is thus an interesting issue.

In summary, this paper gives a general and systematic study on parallel
spectral clustering. We successfully built a system to efficiently cluster large
image data on a distributed computing environment.
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