
SMT Model Building
with MapReduce

Chris Dyer, Alex Mont, Aaron Cordova, Jimmy Lin

A brief intoduction

Statistical machine translation in a (idealized) nutshell:

We consider two decompositions:
-Word-based models (used for word alignment)
-Phrase-based models (used for translation)

A brief intoduction

Statistical machine translation in a (idealized) nutshell:

We consider two decompositions:
-Word-based models (used for word alignment)
-Phrase-based models (used for translation)

How do we estimate the parameters efficiently?

Outline

• MapReduce

• SMT & the SMT pipeline

• MapReducing relative frequencies

• Experimental results

• Future directions

MapReduce

input input input input

map map map map

input input input input

Barrier: group values by keys

reduce reduce reduce

output output output

Figure 2: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

Key/value pairs form the basic data structure in
MapReduce. The “mapper” is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate
key to generate output key/value pairs. This two-
stage processing structure is illustrated in Figure 2.

Under this framework, a programmer need only
provide implementations of map and reduce. On top
of a distributed file system (Ghemawat et al., 2003),
the runtime transparently handles all other aspects
of execution, on clusters ranging from a few to a few
thousand workers on commodity hardware assumed
to be unreliable, and thus is tolerant to various faults
through a number of error recovery mechanisms.
The runtime also manages data exchange, includ-
ing splitting the input across multiple map workers
and the potentially very large sorting problem be-
tween the map and reduce phases whereby interme-
diate key/value pairs must be grouped by key.

For the MapReduce experiments reported in this
paper, we used Hadoop version 0.16.0,3 which is
an open-source Java implementation of MapRe-
duce, running on a 20-machine cluster (1 master,
19 slaves). Each machine has two processors (run-
ning at either 2.4GHz or 2.8GHz), 4GB memory
(map and reduce tasks were limited to 768MB), and
100GB disk. All software was implemented in Java.

3http://hadoop.apache.org/

Method 1
Map1 〈A, B〉 → 〈〈A, B〉, 1〉
Reduce1 〈〈A, B〉, c(A, B)〉
Map2 〈〈A, B〉, c(A, B)〉 → 〈〈A,∗ 〉, c(A, B)〉
Reduce2 〈〈A,∗ 〉, c(A)〉
Map3 〈〈A, B〉, c(A, B)〉 → 〈A, 〈B, c(A, B)〉〉
Reduce3 〈A, 〈B, c(A,B)

c(A) 〉〉

Method 2
Map1 〈A, B〉 → 〈〈A, B〉, 1〉; 〈〈A,∗ 〉, 1〉
Reduce1 〈〈A, B〉, c(A,B)

c(A) 〉

Method 3
Map1 〈A, Bi〉 → 〈A, 〈Bi : 1〉〉
Reduce1 〈A, 〈B1 : c(A,B1)

c(A) 〉, 〈B2 : c(A,B2)
c(A) 〉 ···〉

Table 1: Three methods for computing PMLE(B|A).
The first element in each tuple is a key and the second
element is the associated value produced by the mappers
and reducers.

3 Maximum Likelihood Estimates

The two classes of models under consideration are
parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
cording to the maximum likelihood criterion:

PMLE(B|A) =
c(A, B)
c(A)

=
c(A, B)∑
B′ c(A, B′)

(1)

Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
process given an existing model of that process), we
begin with an overview of how to compute condi-
tional probabilities in MapReduce.

We consider three possible solutions to this prob-
lem, shown in Table 1. Method 1 computes the count
for each pair 〈A, B〉, computes the marginal c(A),
and then groups all the values for a given A together,
such that the marginal is guaranteed to be first and
then the pair counts follow. This enables Reducer3
to only hold the marginal value in memory as it pro-
cesses the remaining values. Method 2 works simi-
larly, except that the original mapper emits two val-
ues for each pair 〈A, B〉 that is encountered: one that

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.
The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invocation. The intermediate val-
ues are supplied to the user’s reduce function via an iter-
ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example
Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.
In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types:
map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.
Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
〈URL,1〉. The reduce function adds together all values
for the same URL and emits a 〈URL,total count〉
pair.

Reverse Web-Link Graph: The map function outputs
〈target,source〉 pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
〈target, list(source)〉

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of 〈word, frequency〉 pairs. The
map function emits a 〈hostname,term vector〉
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
〈hostname,term vector〉 pair.

To appear in OSDI 2004 2

User supplies these functions:

MapReduce: example

Count the words: “Hello, world!” for MapReduce

Map(input):
 for each w in input:
 emit <w,1>

MapReduce: example

Count the words: “Hello, world!” for MapReduce

Map(input):
 for each w in input:
 emit <w,1>

Reduce(key, values):
 sum = 0
 for each val in values:
 sum += val
 emit(key, sum)

MapReduce

• Benefits

• Highly scalable

• Fault tolerant

• Hides details of concurrence from user

• Runs on commodity hardware

• Store massive logical files across small
disks!

The Phrase-Based SMT
Pipeline

parallel text

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoder

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoder

language model

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

1.2s / sent

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

26h17m 48h06m

1.2s / sent

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

26h17m 48h06m

1.2s / sent

Is less data the answer?

15 min

30 min
45 min

1.5 hrs

3 hrs

6 hrs

12 hrs

1 day

2 days

 10000 100000 1e+06 1e+07
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6
T

im
e
 (

s
e
c
o
n
d
s
)

T
ra

n
s
la

ti
o
n
 q

u
a
lit

y
 (

B
L
E

U
)

Corpus size (sentences)

Training time
Translation quality

Timing experiments conducted on Arabic-English training corpora publicly available from the LDC.
Test set is the NIST MT03 evaluation set.

Is less data the answer?

15 min

30 min
45 min

1.5 hrs

3 hrs

6 hrs

12 hrs

1 day

2 days

 10000 100000 1e+06 1e+07
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6
T

im
e
 (

s
e
c
o
n
d
s
)

T
ra

n
s
la

ti
o
n
 q

u
a
lit

y
 (

B
L
E

U
)

Corpus size (sentences)

Training time
Translation quality

Probably not...

Timing experiments conducted on Arabic-English training corpora publicly available from the LDC.
Test set is the NIST MT03 evaluation set.

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi> <the, la>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi> <the, la> <small, pequeña>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi> <the, la> <small, pequeña>
<table, mesa>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi> <the, la> <small, pequeña>
<table, mesa> <i saw the, vi la>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi> <the, la> <small, pequeña>
<table, mesa> <i saw the, vi la>
<small table, mesa pequeña>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi> <the, la> <small, pequeña>
<table, mesa> <i saw the, vi la>
<small table, mesa pequeña>
<the small table, la mesa pequeña>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

<i saw, vi> <the, la> <small, pequeña>
<table, mesa> <i saw the, vi la>
<small table, mesa pequeña>
<the small table, la mesa pequeña>
<i saw the small table, vi la mesa pequeña>

Step 1: extract phrases from a word aligned parallel text

Building a phrase table
<i saw, vi> <the, la> <small, pequeña>
<table, mesa> <i saw the, vi la>
<small table, mesa pequeña>
<the small table, la mesa pequeña>
<i saw the small table, vi la mesa pequeña>
...

Step 2: compute joint counts

<i saw, vi> 15
<i saw the, vi la> 5
<small, pequeña> 72
<the, la> 5434
<the, el> 6218
<table, mesa> 2
...

Building a phrase table

Step 2: compute marginal counts

<i saw, vi> 15
<i saw the, vi la> 5
<small, pequeña> 72
<the, la> 5434
<the, el> 6218
<table, mesa> 2
...

<i saw, *> 15
<i saw the, *> 5
<small, *> 72
<the, *> 11652
<table, *> 2
...

Building a phrase table

Step 2: join and normalize

<i saw, vi> 15
<i saw the, vi la> 5
<small, pequeña> 72
<the, la> 5434
<the, el> 5434
<table, mesa> 2
...

<i saw, *> 15
<i saw the, *> 5
<small, *> 72
<the, *> 11652
<table, *> 2
...

<i saw, vi> 1.0
<i saw the, vi la> 1.0
<small, pequeña> 1.0
<the, la> 0.47
<the, el> 0.53
<table, mesa> 1.0
...

MapReduce

• Phrase translation probabilities are just
relative frequencies f(e|f)

• Relative frequencies can be estimated using
MapReduce.

• Why MapReduce?

• Easy parallelization across many machines

• No expensive infrastructure required

Computing Relative
Frequencies

!"#$% !"#$% !"#$% !"#$%

&'# &'# &'# &'#

!"#$% !"#$% !"#$% !"#$%

('))!*)+!,)-$#!.'/$*0!12!3*20

)*4$5*)*4$5*)*4$5*

-$%#$% -$%#$% -$%#$%

Figure 2: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

Key/value pairs form the basic data structure in
MapReduce. The “mapper” is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate
key to generate output key/value pairs. This two-
stage processing structure is illustrated in Figure 2.

Under this framework, a programmer need only
provide implementations of map and reduce. On top
of a distributed file system (Ghemawat et al., 2003),
the runtime transparently handles all other aspects
of execution, on clusters ranging from a few to a few
thousand workers on commodity hardware assumed
to be unreliable, and thus is tolerant to various faults
through a number of error recovery mechanisms.
The runtime also manages data exchange, includ-
ing splitting the input across multiple map workers
and the potentially very large sorting problem be-
tween the map and reduce phases whereby interme-
diate key/value pairs must be grouped by key.

For the MapReduce experiments reported in this
paper, we used Hadoop version 0.16.0,3 which is
an open-source Java implementation of MapRe-
duce, running on a 20-machine cluster (1 master,
19 slaves). Each machine has two processors (run-
ning at either 2.4GHz or 2.8GHz), 4GB memory
(map and reduce tasks were limited to 768MB), and
100GB disk. All software was implemented in Java.

3http://hadoop.apache.org/

Method 1
Map1 〈A, B〉 → 〈〈A, B〉, 1〉
Reduce1 〈〈A, B〉, c(A, B)〉
Map2 〈〈A, B〉, c(A, B)〉 → 〈〈A,∗ 〉, c(A, B)〉
Reduce2 〈〈A,∗ 〉, c(A)〉
Map3 〈〈A, B〉, c(A, B)〉 → 〈A, 〈B, c(A, B)〉〉
Reduce3 〈A, 〈B, c(A,B)

c(A) 〉〉

Method 2
Map1 〈A, B〉 → 〈〈A, B〉, 1〉; 〈〈A,∗ 〉, 1〉
Reduce1 〈〈A, B〉, c(A,B)

c(A) 〉

Method 3
Map1 〈A, Bi〉 → 〈A, 〈Bi : 1〉〉
Reduce1 〈A, 〈B1 : c(A,B1)

c(A) 〉, 〈B2 : c(A,B2)
c(A) 〉 · · · 〉

Table 1: Three methods for computing PMLE(B|A).
The first element in each tuple is a key and the second
element is the associated value produced by the mappers
and reducers.

3 Maximum Likelihood Estimates

The two classes of models under consideration are
parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
cording to the maximum likelihood criterion:

PMLE(B|A) =
c(A, B)
c(A)

=
c(A, B)∑
B′ c(A, B′)

(1)

Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
process given an existing model of that process), we
begin with an overview of how to compute condi-
tional probabilities in MapReduce.

We consider three possible solutions to this prob-
lem, shown in Table 1. Method 1 computes the count
for each pair 〈A, B〉, computes the marginal c(A),
and then groups all the values for a given A together,
such that the marginal is guaranteed to be first and
then the pair counts follow. This enables Reducer3
to only hold the marginal value in memory as it pro-
cesses the remaining values. Method 2 works simi-
larly, except that the original mapper emits two val-
ues for each pair 〈A, B〉 that is encountered: one that

!"#$% !"#$% !"#$% !"#$%

&'# &'# &'# &'#

!"#$% !"#$% !"#$% !"#$%

('))!*)+!,)-$#!.'/$*0!12!3*20

)*4$5*)*4$5*)*4$5*

-$%#$% -$%#$% -$%#$%

Figure 2: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

Key/value pairs form the basic data structure in
MapReduce. The “mapper” is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate
key to generate output key/value pairs. This two-
stage processing structure is illustrated in Figure 2.

Under this framework, a programmer need only
provide implementations of map and reduce. On top
of a distributed file system (Ghemawat et al., 2003),
the runtime transparently handles all other aspects
of execution, on clusters ranging from a few to a few
thousand workers on commodity hardware assumed
to be unreliable, and thus is tolerant to various faults
through a number of error recovery mechanisms.
The runtime also manages data exchange, includ-
ing splitting the input across multiple map workers
and the potentially very large sorting problem be-
tween the map and reduce phases whereby interme-
diate key/value pairs must be grouped by key.

For the MapReduce experiments reported in this
paper, we used Hadoop version 0.16.0,3 which is
an open-source Java implementation of MapRe-
duce, running on a 20-machine cluster (1 master,
19 slaves). Each machine has two processors (run-
ning at either 2.4GHz or 2.8GHz), 4GB memory
(map and reduce tasks were limited to 768MB), and
100GB disk. All software was implemented in Java.

3http://hadoop.apache.org/

Method 1
Map1 〈A, B〉 → 〈〈A, B〉, 1〉
Reduce1 〈〈A, B〉, c(A, B)〉
Map2 〈〈A, B〉, c(A, B)〉 → 〈〈A,∗ 〉, c(A, B)〉
Reduce2 〈〈A,∗ 〉, c(A)〉
Map3 〈〈A, B〉, c(A, B)〉 → 〈A, 〈B, c(A, B)〉〉
Reduce3 〈A, 〈B, c(A,B)

c(A) 〉〉

Method 2
Map1 〈A, B〉 → 〈〈A, B〉, 1〉; 〈〈A,∗ 〉, 1〉
Reduce1 〈〈A, B〉, c(A,B)

c(A) 〉

Method 3
Map1 〈A, Bi〉 → 〈A, 〈Bi : 1〉〉
Reduce1 〈A, 〈B1 : c(A,B1)

c(A) 〉, 〈B2 : c(A,B2)
c(A) 〉 · · · 〉

Table 1: Three methods for computing PMLE(B|A).
The first element in each tuple is a key and the second
element is the associated value produced by the mappers
and reducers.

3 Maximum Likelihood Estimates

The two classes of models under consideration are
parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
cording to the maximum likelihood criterion:

PMLE(B|A) =
c(A, B)
c(A)

=
c(A, B)∑
B′ c(A, B′)

(1)

Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
process given an existing model of that process), we
begin with an overview of how to compute condi-
tional probabilities in MapReduce.

We consider three possible solutions to this prob-
lem, shown in Table 1. Method 1 computes the count
for each pair 〈A, B〉, computes the marginal c(A),
and then groups all the values for a given A together,
such that the marginal is guaranteed to be first and
then the pair counts follow. This enables Reducer3
to only hold the marginal value in memory as it pro-
cesses the remaining values. Method 2 works simi-
larly, except that the original mapper emits two val-
ues for each pair 〈A, B〉 that is encountered: one that

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Mapper counts joint events.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2

Reducer computes counts.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4

Reducer computes counts.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4 1

Reducer computes counts.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4 1

3

Reducer computes counts.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4 1

3 1

Reducer computes counts.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4 1

3 1

A second reducer computes marginals.

Method 1

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4 1 7

3 1

A second reducer computes marginals.

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4 1 7

3 1 4

A second reducer computes marginals.

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

2 4 1 7

3 1 4

A second reducer computes marginals.

Alternative: mappers emits marginal counts
too for each event, a single reducer computes

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 4 1 7

3 1 4

Reducer can sort marginal before all other
sums and normalize, one cell at a time.

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 1 7

3 1 4

Reducer can sort marginal before all other
sums and normalize, one cell at a time.

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

3 1 4

Reducer can sort marginal before all other
sums and normalize, one cell at a time.

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

0.8 1 4

Reducer can sort marginal before all other
sums and normalize, one cell at a time.

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

0.8 0.2 4

Reducer can sort marginal before all other
sums and normalize, one cell at a time.

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

0.8 0.2 4

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

0.8 0.2 4

The join is a very large, expensive sort. Can
we do better?

Methods 1/2

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

0.8 0.2 4

The join is a very large, expensive sort. Can
we do better?

Yes - if the CPDs we are estimating have few
parameters...

Method 3

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

Method 3

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

If memory allows, each reducer job counts,
marginalizes, and normalizes.

Method 3

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

If memory allows, one reducer counts,
marginalizes, and normalizes.

Method 3

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

0.8 0.2 4

If memory allows, one reducer counts,
marginalizes, and normalizes.

Method 3

Corpus: <a,1> <a,2> <b,1> <a,2> <a,3> <b,4> <a,2> <b,1> <a,2> <b,1> <a,1>

1 2 3 4 Σ
a
b

0.3 0.6 0.1 7

0.8 0.2 4

Rather than sorting keys from V1xV2,
we just sort over item into bins from V2

Computing Relative
Frequency

Phrase pairs
Word pairs

Computing Relative
Frequency

Method 1 Method 2 Method 3
0

375

750

1,125

1,500

Phrase pairs
Word pairs

Computing Relative
Frequency

Method 1 Method 2 Method 3
0

375

750

1,125

1,500

Phrase pairs
Word pairs

Computing Relative
Frequency

Method 1 Method 2 Method 3
0

375

750

1,125

1,500

Phrase pairs
Word pairs

Computing Relative
Frequency

Method 1 Method 2 Method 3
0

375

750

1,125

1,500

Phrase pairs
Word pairs

MapReduce Phrase-
table building

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

26h17m 48h06m

1.2s / sent

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

26h17m 48h06m

1.2s / sent

1h58m

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

26h17m 48h06m

1.2s / sent

1h58m

Word alignment

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

To build our models, we need this:

But, the alignment points aren’t given...

Word alignment

will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
e
th

o
d
 1

M
e
th

o
d
 2

M
a
th

o
d
 3

T
im

e
 (

s
e
c
o
n
d
s
)

Estimation method

Phrase pairs
Word pairs

Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.

To build our models, we need this:

But, the alignment points aren’t given...

EM to the rescue!

Generative alignment
models: a brief intro

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e
c
o
n
d
s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).

Generative alignment
models: a brief intro

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e
c
o
n
d
s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).

Assume a lexical model!

Generative alignment
models: a brief intro

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e
c
o
n
d
s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).

Still too complicated, so we make one of two further assumptions:

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).(HMM)

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).uniform(IBM Model 1)

Generative alignment
models: a brief intro

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e
c
o
n
d
s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).(HMM)

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).uniform(IBM Model 1)

Once we have such a model, computing the Viterbi alignment is simply:

1.5 min

5 min

20 min

60 min

3 hrs

12 hrs

2 days

 10000 100000 1e+06 1e+07

T
im

e
 (

s
e
c
o
n
d
s
)

Corpus size (sentences)

Moses training time
MapReduce training (38 M/R)

Optimal (Moses/38)

Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑

am
1

P (fm
1 , am

1 |el
1)

=
∑

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1)

m∏

j=1

P (fj |eaj)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1) =

∏m
j=1 P (aj |aj−1).

Still too complicated, so we make one of two further assumptions:

Word alignment

Estimating the parameters for these models is more
difficult (and more computationally expensive) than
with the models considered in the previous section:
rather than simply being able to count the word pairs
and alignment relationships and estimate the mod-
els directly, we must use an existing model to com-
pute the expected counts for all possible alignments,
and then use these counts to update the new model.7

This training strategy is referred to as expectation-
maximization (EM) and is guaranteed to always im-
prove the quality of the prior model at each iteration
(Brown et al., 1993; Dempster et al., 1977).

Although it is necessary to compute a sum over all
possible alignments, the independence assumptions
made in these models allow the total probability of
generating a particular observation to be efficiently
computed using dynamic programming.8 The HMM
alignment model uses the forward-backward algo-
rithm (Baum et al., 1970), which is also an in-
stance of EM. Even with dynamic programming,
this requires O(Slm) operations for Model 1, and
O(Slm2) for the HMM model, where m and l are
the average lengths of the foreign and English sen-
tences in the training corpus, and S is the number of
sentences. Figure 6 shows measurements of the av-
erage iteration run-time for Model 1 and the HMM
alignment model as implemented in Giza++ (Och
and Ney, 2003), a state-of-the-art C++ implemen-
tation of the IBM and HMM alignment models that
is widely used. Five iterations are generally neces-
sary to train the models, so the time to carry out full
training of the models is approximately five times the
per-iteration run-time.

5.1 EM with MapReduce

Expectation-maximization algorithms can be ex-
pressed quite naturally in the MapReduce frame-
work (Chu et al., 2006). In general, for discrete gen-
erative models, mappers iterate over the training in-
stances and compute the partial expected counts for
all the unobservable events in the model that should

7For the first iteration, when there is no prior model, a
heuristic, random, or uniform distribution may be chosen.

8For IBM Models 3-5, which are not our primary focus, dy-
namic programming is not possible, but the general strategy for
computing expected counts from a previous model and updat-
ing remains identical and therefore the techniques we suggest
in this section are applicable to those models as well.

3 s

10 s

30 s

90 s

3m20s

20 min

60 min

3 hrs

 10000 100000 1e+06

A
v
e

ra
g

e
 i
te

ra
ti
o

n
 l
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

Model 1
HMM

Figure 6: Per-iteration average run-times for Giza++ im-
plementations of Model 1 and HMM training on corpora
of various sizes.

be associated with the given training instance. Re-
ducers aggregate these partial counts to compute
the total expected joint counts. The updated model
is estimated using the maximum likelihood crite-
rion, which just involves computing the appropri-
ate marginal and dividing (as with the phrase-based
models), and the same techniques suggested in Sec-
tion 3 can be used with no modification for this
purpose. For word alignment models, Method 3
is possible since word pairs distribute according to
Zipf’s law (meaning there is ample opportunity for
the combiners to combine records), and the number
of parameters for P (e|fj = f) is at most the num-
ber of items in the vocabulary of E, which tends to
be on the order of hundreds of thousands of words,
even for large corpora.

Since the alignment models we are considering
are fundamentally based on a lexical translation
probability model, i.e., the conditional probability
distribution P (e|f), we describe in some detail how
EM updates the parameters for this model.9 Using
the model parameters from the previous iteration (or
starting from an arbitrary or heuristic set of param-
eters during the first iteration), an expected count is
computed for every l × m pair 〈ei, fj〉 for each par-
allel sentence in the training corpus. Figure 7 illus-

9Although computation of expected count for a word pair
in a given training instance obviously depends on which model
is being used, the set of word pairs for which partial counts are
produced for each training instance, as well as the process of ag-
gregating the partial counts and updating the model parameters,
is identical across this entire class of models.

A familiar problem with the conventional tools:

EM for MapReduce

• EM relies on MLE, but counts are fractional
rather than whole

• Same MR strategies are available (and same
optimizations!)

the

blue

house

maison la bleue fleur

flower

la maison

the house

la maison bleue la fleur

the blue house the flower

(a)

(b)

Figure 7: Each cell in (a) contains the expected counts for
the word pair 〈ei, fj〉. In (b) the example training data is
marked to show which training instances contribute par-
tial counts for the pair 〈house, maison〉.

3 s

10 s

30 s

90 s

3m20s

20 min

60 min

3 hrs

 10000 100000 1e+06

T
im

e
 (

s
e
c
o
n
d
s
)

Corpus size (sentences)

Optimal Model 1 (Giza/38)
Optimal HMM (Giza/38)

MapReduce Model 1 (38 M/R)
MapReduce HMM (38 M/R)

Figure 8: Average per-iteration latency to train HMM
and Model 1 using the MapReduce EM trainer, compared
to an optimal parallelization of Giza++ across the same
number of processors.

trates the relationship between the individual train-
ing instances and the global expected counts for a
particular word pair. After collecting counts, the
conditional probability P (f |e) is computed by sum-
ming over all columns for each f and dividing. Note
that under this training regime, a non-zero probabil-
ity P (fj |ei) will be possible only if ei and fj co-
occur in at least one training instance.

5.2 Experimental Results

Figure 8 shows the timing results of the MapReduce
implementation of Model 1 and the HMM alignment
model. Similar to the phrase extraction experiments,
we show as reference the running time of a hy-
pothetical, optimally-parallelized version of Giza++
on our cluster (i.e., values in Figure 6 divided by
38). Whereas in the single-core implementation the

added complexity of the HMM model has a signif-
icant impact on the per-iteration running time, the
data exchange overhead dominates in the perfor-
mance of both models in a MapReduce environment,
making running time virtually indistinguishable. For
these experiments, after each EM iteration, the up-
dated model parameters (which are computed in a
distributed fashion) are compiled into a compressed
representation which is then distributed to all the
processors in the cluster at the beginning of the next
iteration. The time taken for this process is included
in the iteration latencies shown in the graph. In fu-
ture work, we plan to use a distributed model repre-
sentation to improve speed and scalability.

6 Related work

Expectation-maximization algorithms have been
previously deployed in the MapReduce framework
in the context of several different applications (Chu
et al., 2006; Das et al., 2007; Wolfe et al., 2007).
Wolfe et al. (2007) specifically looked at the perfor-
mance of Model 1 on MapReduce and discuss how
several different strategies can minimize the amount
of communication required but they ultimately ad-
vocate abandoning the MapReduce model. While
their techniques do lead to modest performance im-
provements, we question the cost-effectiveness of
the approach in general, since it sacrifices many of
the advantages provided by the MapReduce envi-
ronment. In our future work, we instead intend to
make use of an approach suggested by Das et al.
(2007), who show that a distributed database run-
ning in tandem with MapReduce can be used to
provide the parameters for very large mixture mod-
els efficiently. Moreover, since the database is dis-
tributed across the same nodes as the MapReduce
jobs, many of the same data locality benefits that
Wolfe et al. (2007) sought to capitalize on will be
available without abandoning the guarantees of the
MapReduce paradigm.

Although it does not use MapReduce, the MTTK
tool suite implements distributed Model 1, 2 and
HMM training using a “home-grown” paralleliza-
tion scheme (Deng and Byrne, 2006). However, the
tool relies on a cluster where all nodes have access to
the same shared networked file storage, a restriction
that MapReduce does not impose.

0.8
0.6

MapReduce word
alignment

3 s

10 s

30 s

90 s

3m20s

20 min

60 min

3 hrs

 10000 100000 1e+06

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

HMM alignment (Giza toolkit)

MapReduce word
alignment

3 s

10 s

30 s

90 s

3m20s

20 min

60 min

3 hrs

 10000 100000 1e+06

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

HMM alignment (Giza toolkit)
HMM alignment (MapReduce implementation)

MapReduce word
alignment

3 s

10 s

30 s

90 s

3m20s

20 min

60 min

3 hrs

 10000 100000 1e+06

T
im

e
 (

s
e

c
o

n
d

s
)

Corpus size (sentences)

HMM alignment (hypothetical, optimally-parallelized)
HMM alignment (MapReduce implementation)

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

26h17m 48h06m

1.2s / sent

1h58m

The Phrase-Based SMT
Pipeline

1. alignment modeling

parallel text word alignment phrase table

2. phrase extraction and scoring

decoderη συσκευή μου δεν λειτουργεί ...

language model

my machine is not working ...

26h17m 48h06m

1.2s / sent

1h58m0h57m

Future Work

• Word alignment

• How to access/distribute the prior model?

• Is EM really a good choice?

• Good results in a Bayesian framework

• Ongoing work using a CRF-based model

• Are exact solutions really necessary?

• How can we improve data locality?

Thank You!

*This research was supported by the GALE program of the Defense
Advanced Projects Agency, Contract No. HR0011-06-2-0001

Jimmy Lin

Eugene Hung

Philip Resnik

Miles Osborne

Chris Manning

CBCB@UMD

IBM

Google

