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Abstract—Current high-throughput algorithms for constructing inverted files all follow the MapReduce framework, which presents a

high-level programming model that hides the complexities of parallel programming. In this paper, we take an alternative approach and

develop a novel strategy that exploits the current and emerging architectures of multicore processors. Our algorithm is based on a

high-throughput pipelined strategy that produces parallel parsed streams, which are immediately consumed at the same rate by

parallel indexers. We have performed extensive tests of our algorithm on a cluster of 32 nodes, and were able to achieve a throughput

close to the peak throughput of the I/O system: a throughput of 280 MB/s on a single node and a throughput that ranges between

5.15 GB/s (1 Gb/s Ethernet interconnect) and 6.12 GB/s (10 Gb/s InfiniBand interconnect) on a cluster with 32 nodes for processing

the ClueWeb09 data set. Such a performance represents a substantial gain over the best known MapReduce algorithms even when

comparing the single node performance of our algorithm to MapReduce algorithms running on large clusters. Our results shed a light

on the extent of the performance cost that may be incurred by using the simpler, higher level MapReduce programming model for large

scale applications.

Index Terms—Inverted files, MapReduce, multicore processors, cluster, I/O throughput, parallel algorithms, parallel parsing and

indexing, pipeline
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1 INTRODUCTION

THE main goal of this work is to develop optimized
throughput strategies for constructing inverted files on

a cluster of multicore processors, which exploit current and
emerging architectures of multicore processors. At the same
time, we compare the resulting performance to the best
performance achieved by the much simpler and higher
level MapReduce algorithms thereby shedding some light
on the tradeoff between the programming simplicity of the
MapReduce framework and the performance of carefully
fine-tuned strategies to the underlying architectures. The
current trend in CPU architectures increasingly includes
more cores on a single chip, several levels of cache, and a
large RAM, and such a trend is likely to continue in the
foreseeable future. These multicore processors offer oppor-
tunities for speeding up demanding computations if the
available resources can be effectively used, which is in
general very hard to accomplish for large complex
computations such as the generation of inverted files.

The extraction of inverted files from a very large
collection of documents forms a critical component of all
information retrieval systems including web search engines.
A considerable amount of research has been conducted to
deal with various aspects related to inverted files. In this
paper, we are primarily concerned with methods to generate
the inverted files with the best possible throughput. All the
recent fast indexers use the simple MapReduce framework

on large clusters, which enables quick development of
parallel algorithms dealing with internet scale data sets
without having to deal with the complexities of low-level
parallel programming. Such framework leaves the details of
scheduling, processor allocation, and communication to the
underlying runtime system, and hence relieves program-
mers from all the extra work related to these details.
However, such an abstraction may come at a price in terms
of performance, especially when using the emerging multi-
core processors. In this paper, we take the different
approach that tries to exploit the common features present
on current multicore processors to develop an optimized
high-throughput algorithm and compare its performance to
the best known MapReduce algorithms.

We conduct extensive tests of our algorithm on a cluster of
32 nodes, each node consisting of two Quad-core Intel Xeon
X5560 processors with 24 GB of main memory and each
quad-core shares an 8 MB L3 cache. In our tests, either a
10 Gb/s InfiniBand or a 1 Gb/s Ethernet is used as the
interconnect fabric in our cluster; moreover, the input
collection of documents is either distributed among the disks
attached to the nodes or stored on a separate storage pool
connected to the cluster through a 4 Gb/s pipe. Each node
offers a multithreaded environment with a shared memory
programming model and the nodes communicate with each
other using the Message Passing Interface (MPI) framework.

The main contributions of this paper are:

. Development of an optimized high-throughput
pipelined strategy for a cluster of multicore proces-
sors, under either the 1 Gb/s Ethernet or the 10 Gb/s
interconnect, and under either the distributed
storage model or the centralized storage pool model.

. Introduction of a number of new techniques to
partition the indexing workload while minimizing
the communication and ensuring load balancing in
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such a way that the parallel parsed streams are
immediately consumed at the same fast rate by the
distributed, parallel indexers.

. Generation of extensive experimental results illus-
trating scalability relative to the optimized single
node algorithm. In particular, each node achieves a
throughput of 280 MB/s, leading to over 6 GB/s for
the 32-node cluster when the InfiniBand interconnect
is used and over 5 GB/s when the 1 Gb/s Ethernet is
used. The performance results seem to be substan-
tially better than the best previous published results
that adopt the MapReduce framework.

The rest of the paper is organized as follows: In the next
section, we provide a brief background about the typical
strategy used to build inverted files and a summary of the
previous work that is most related to our paper. Section 3
provides a description of an algorithm optimized for a single
node with multicore processors, which was introduced in
our earlier work [1]. Section 4 extends the algorithm to a
cluster of multicore processors while Section 5 provides a
summary of our test results on three very different,
significant benchmarks. We conclude in Section 6.

2 BACKGROUND AND PREVIOUS RELATED WORK

Our overall process converts a collection of documents into
inverted files consisting of a postings list for each of the terms
appearing in the collection as follows: This well-known
strategy starts by parsing each document into a “bag of
words” of the form <term, document ID> tuples, followed by
constructing a postings list for each term such that each
posting contains the ID of the document containing the term,
term frequency, and possibly other information. Parsing
consists of a sequence of simple steps: tokenization, stemming,
and removal of stop words. Tokenization splits a document into
individual tokens; stemming converts different forms of a root
term into a single common one (e.g., “parallelize,” “paralle-
lization,” “parallelism,” are all based on “parallel”); and
removal of stop words consists of eliminating common terms,
such as “the,” “to,” “and,” etc. The overall parsing process is
well understood, and follows more or less the same linguistic
rules, even though there exist different stemming strategies.

The next phase consists of constructing the inverted
index. All <term, document ID> tuples belonging to the
same term are combined together to form the postings list of
that term. During the construction, a dictionary is usually
built to maintain the location of the postings list of each
term and to collect some related statistics. Postings on the
same list are usually organized in a sorted order of
document IDs for faster look up. Indexing is a relatively
simple operation—group tuples for the same term together
and then carry out sorting by document IDs—but it is
always by far the most time consuming part given the
typical size of the collection to be indexed.

Recent work includes the sort-based indexing [2] pro-
posed by Moffat and Bell for limited memory. Their strategy
builds temporary postings lists in memory until the memory
space is exhausted, sorts them by term and document ID
and then writes the result to disk for each run. When all runs
are completed, it merges all these intermediate results into
the final postings lists file. The dictionary is kept in memory;

however as the size grows, there may be insufficient space
for temporary postings lists. Heinz and Zobel [3] further
improved this strategy to a single-pass in-memory indexing
version by writing the temporary dictionary to disk as well
at the end of each run. Dictionary is processed in
lexicographical term order so adjacent terms are likely to
share the same prefix and front-coding compression is
employed to reduce the size.

We now turn to a review of the major parallel strategies
that appeared in the literature. In [4], the indexing process is
divided into loading, processing, and flushing; these three
stages are pipelined by software in such a way that loading
and flushing are hidden by the processing stage. The
Remote-Buffer and Remote-Lists algorithm in [5] is tailored
for distributed systems. In the first run, the global
dictionary is computed and distributed to each processor
and in the following runs, once a <term, document ID>
tuple is generated, it is sent to a preassigned processor
where it is inserted into the destination sorted postings list.
Today, MapReduce-based algorithms are prevalent. First
proposed in [6], the MapReduce paradigm provides a
simplified programming model for distributed computing
involving internet scale data sets on large clusters. The Map
workers emit <key, value> pairs to Reduce workers defined
by Master node, and the runtime would automatically
group incoming <key, value> pairs received by a Reduce
worker according to key field and pass <key, list of values
associated with this key> to the Reduce function. A
straightforward MapReduce algorithm for indexing is to
use term as key and document ID as value, in which case
the Reduce workers can directly receive unsorted postings
lists. Since there is no mechanism for different Map workers
to communicate with each other, creating a global dic-
tionary is not possible. McCreadie et al. let Map worker
emit <term, partial postings list> instead to reduce the
number of emits and the resultant total transfer size
between Map and Reduce since duplicate term fields are
less frequently sent. Their strategy has achieved a good
speedup relative to the number of nodes and cores [7], [8].
Around the same time, Lin et al. [9], [10] developed a
scalable MapReduce Indexing algorithm by switching
<term, posting{document ID, term frequency}> to <tuple{-
term, document ID}, term frequency>. By doing so, there is
at most one value for each unique key, and moreover it is
guaranteed by the MapReduce framework that postings
arrive at Reduce worker in order. As a result, a posting can
be immediately appended to the postings list without any
postprocessing. Their algorithm seems to achieve the best
known throughput rate for full text indexing.

We note that almost all the above strategies perform
compression on the postings lists for otherwise the output
file would be quite large. Because document IDs are stored
in sorted order in each postings list, a basic idea used is to
encode the gap between two neighbor document IDs
instead of their absolute values combined with a compres-
sion strategy such as variable byte encoding, � encoding,
and Golomb compression.

3 ALGORITHM ON A SINGLE MULTICORE NODE

The starting point of our cluster algorithm is the pipelined
strategy on a single node with multicore processors
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presented in our earlier paper [1]. This section is devoted to
an overview of this strategy.

3.1 Overall Approach

Briefly, a number of parsers run in parallel on the multicore
CPU, where each parser reads a fixed size (typically, 1 GB)
block from the disk containing the documents, executes the
parsing algorithm, and then writes the parsed results onto a
buffer. A number of indexers pull parsed results from the
buffer as soon as they are available and jointly construct the
postings lists, which are written into a disk as soon as they
are generated. The dictionary remains in main memory
until the whole process is completed. Such a pipelined data
flow avoids writing intermediate results onto disks unlike
the Map workers used in the MapReduce framework,
which typically transfer data to Reduce workers via disks
[6], [7], [8], [9], [10].

There are many details that need to be carefully worked
out for this approach to achieve optimal throughput. Here,
we summarize the key aspects used in the rest of the paper,
starting with the dictionary data structure.

In [1], we introduce a hybrid data structure consisting of
a trie at the top level and a B-Tree attached to each of the
leaves of the trie. Essentially, terms are mapped into
different groups, called trie-collections, each of which is then
represented by a B-tree.

In our case, we fix the height of the trie to three, which
implies that the first three letters in a term are used to
determine the corresponding the index of the trie collection.
We observe that there are still a significant number of terms
with less than four letters or have at least one letter outside
range [a-z] in the first three letters. To accommodate such
terms, we create additional 1,024 trie collections indexed 0-
1,023 and use a hash function for a balanced distribution.

In addition to allowing a high degree of parallelism
through the independent B-trees, our hybrid data structure
achieves two additional benefits. Since we replace a big B-
tree by many small B-trees, the heights of the B-trees are
smaller, implying that the time to search or insert a new
term is reduced as well. Another advantage of the trie lies in
the fact that terms belonging to the same trie index share the
same prefix (except trie indices 0-1,023) and hence we can
eliminate such common prefix and save memory space for
term strings and reduce string comparison time in B-tree
operations. The average length of a stemmed token is 6.6 in
the ClueWeb09 data set and hence removing the first three
letters results in almost doubling the string comparison
speed. An alternative option to the trie is to simply use a
hash function for all the terms, but this will still require
comparisons and searches to be performed on whole strings
and hence won’t be as effective as the trie.

The degree of B-tree is 16, that is, each node can hold up
to 31 terms. Since the length of a term string is not fixed but
varies over a wide range, it is impossible to store the strings
within a fixed B-Tree node; instead, pointers are used to
indicate the memory location of the actual strings. During a
search or insert operation into one of the B-trees, strings are
accessed through these pointers, and such operations can be
quite expensive. To get around this problem, we include 31
4-byte caches in each node. These caches are used to store
the first four bytes of the corresponding term strings.

3.2 Structure of Parallel Parsers

As shown in Fig. 1, we will have M parsers running in
parallel on a single node. Each parser processes a segment
of documents independently after reading the segment
from disk as illustrated in Fig. 5. The number M of parsers
depends on the number of CPU cores and overall resources
available, to be discussed later.

Here, we describe the sequence of operations executed
by each parser. Each such sequence will be executed by a
single CPU thread. The corresponding steps are briefly
described next.

. Step1 reads files from disk, decompresses them if
necessary, assigns local document ID to each
document, and builds a table containing <document
ID, document location on disk> mapping.

. Step2 performs tokenization, that is, parses each
document into tokens and determines the trie index
of each resulting term.

. Step3 performs Porter stemmer.

. Step4 removes stop words using a stop word list.

. Step5 rearranges terms with the same trie index so
that they are located contiguously. In addition, the
prefix of each term captured by the trie index is
removed.

The first four steps are standard in most indexing
systems. Step5 is special to our algorithm. Essentially, this
step regroups the terms into a number of groups, a group
for each trie collection index as defined by our dictionary
data structure. We note that the overhead of this regrouping
step is relatively small, about 5 percent of the total running
time of the whole parsing process. This is due to the fact
that tokenization scans input document character by
character and hence a trie collection index can be calculated
as a by-product using a minimal additional effort.

This regrouping is needed for our parallel indexing
algorithm. More specifically, when indexing is carried out
by a serial CPU thread, regrouping results in approximately
15-fold speedup based on our tests. The improved
performance is due to improved cache performance caused
by the additional temporal locality. Now, we are processing
a group of terms falling under the same trie collection
index, which are inserted into the same small B-tree whose
content stays in cache for a long time.

Therefore, after processing a number of documents
(contained in a 1 GB file in our case), the parsed results
organized according to trie index values will be passed to
the indexers. For each trie collection, the parsed results will
look like:

Trie Collection : ðDoc ID1; term1; term2; . . .Þ;
ðDoc ID2; term1; term2; . . .Þ; . . .
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Doc_IDs on the lists are local IDs within each parser. A
global document ID offset will be calculated by the indexer
and then the global document ID can be obtained by adding
Doc_ID and the global offset.

3.3 Structure of Parallel Indexers

The purpose of an indexer is to construct all the B-trees and
the postings lists corresponding to each input term as
shown in Fig. 2. To ensure load balancing, a CPU thread
will take care of the B-trees of several trie collections as we
explain later.

An indexer is executed by a single CPU thread, which
follows the commonly used procedures for building the B-
tree and the corresponding postings lists. The only
difference is to make use of the fact that a cache is included
within each B-tree node. Hence, when a new term is
inserted into a B-tree, the first four bytes of the string are
stored in the string cache field in the appropriate B-tree
node. The remaining bytes, if any, are stored in another
memory location, which can be reached via the string
pointer for this term.

We observe that two tokens, appearing close to each
other in a single document and belonging to the same trie
collection, are likely to be the same term. For example,
“that” is a commonly used term and hence the next term
with prefix “tha-” is also likely to be “that”; on the other
hand, an unusual term such as “zooblast” has the same
implications since there are few terms with prefix “zoo-”.
We can mine such linguistic facts here because of the trie
structure that groups terms with common prefix together.
Therefore, we use a special cache to store the last term
inserted into B-Tree and the location of its postings list.
Then, we compare the next term with the term stored in the
cache and if they match we skip the B-tree operations and
immediately update the corresponding postings list. We
enable such cache only within a single document because
different documents will behave differently in which case
caching is ineffective in general.

We now address the issue of assigning the 18,600 trie
collections among the parallel indexer threads so that the
load will be distributed almost equally among the threads.

In [1], we argue that a sampling strategy is the most
effective to allocate parsed streams to indexers. Sampling
refers to extracting a sample from the document collection at
the very beginning, for example, a random 1 MB out of every
1 GB, and run several tests on the sample to determine the
best partitioning strategy of the trie collections. In this case,
once a trie collection is assigned to a certain indexer, it will
always be processed by the same indexer throughout the
lifetime of the algorithm, that is, there is a persistent binding
between a trie collection and the indexer ID.

In addition to the main indexing step, preprocessing
delivers input from buffer to multiple indexers and
postprocessing combines postings lists from all indexers,
compresses them with variable byte encoding and then
writes the compact results to disk. These two steps are
serialized. Each iteration, beginning with the data in a
parser buffer and ending in postings lists is referred to as a
run illustrated in Fig. 3.

3.4 Overall Pipelined Data Flow

In our setting, the input document data collection is stored
on a disk and is processed through our multicore CPU
platform to generate the postings lists and store them on a
disk. The dictionary is kept in main memory until the last
batch of documents is processed, after which it is moved to
the disk as shown in Fig. 4. The number of parsers and
the number of indexers are determined depending on the
physical resources available. In Section 5, we determine the
best values of these parameters for our platform.

To avoid several parsers from trying to read from
the same disk at the same time, a scheduler is used to
organize the reads of the different parsers, one at a time.
On the other hand, an output buffer is allocated to each
parser to store the corresponding parsed results. The
indexers in the next stage will read from these buffers in
order, that is, (buffer of Parser 0, buffer of Parser 1; . . . ,
buffer of Parser M-1, buffer of Parser 0; . . . ). Such read
sequence is enforced to ensure that document first read
from disk will also be indexed first so the postings lists are
intrinsically in sorted order of assigned document IDs. A
parser has to also wait until buffer is cleared to start the
parsing of the next block of documents to ensure that it has
the space to write the parsed results. When these
constraints are applied, the timing sequence of parallel
parsers looks like the example shown in Fig. 5.

4 ALGORITHM ON A CLUSTER

We now extend our single node strategy to a cluster of
multicore processors. Our goal is to build a global

2036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012

Fig. 3. Data flow of one single run on parallel indexers.

Fig. 4. Pipelined and parallel parsing and indexing on a single node.
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dictionary and generate the postings lists stored on external
storage with the maximum possible throughput. There are
two possible strategies to extend the algorithm.

. Divide-and-Merge. Each node processes an equal
portion of the document collection following the single
node algorithm, after which the local dictionaries and
postings lists from all the nodes are merged. This method
follows the standard divide-and-conquer strategy and
hence its effectiveness depends on the merging phase.

. Partition-and-Index. At the end of each parsing stage,
parsed streams are distributed among the cluster nodes in
such a way that parallel indexers complete the indexing
process with no need to communicate. This strategy
includes a sampling preprocessing step that creates a
persistent mapping between the trie collection indexes and
the IDs of the indexers, which is used to distribute the
parsed streams to the nodes.

It is clear that the divide-and-merge strategy will achieve
excellent performance during the first stage of parsing and
indexing because every node will work independently on
its portion of the document collections with no commu-
nication required between the nodes. However the merge
stage is quite complex since all the different tries and their
trie collections have to be combined into a single global
indexing structure, a task that seems to require a substantial
communication and coordination overhead.

On the other hand, the partition-and-index approach
requires a careful fixed (regardless of the block of
documents being processed) assignment of trie collections
to indexer thread IDs so that the generated output (trie, B-
trees, and postings listings) will always be distributed
almost equally among the nodes. This strategy incurs some
communication overhead up front immediately after a
block of documents are parsed. However, at any time, our
approach ensures that the dictionary is a coherent, global
dictionary, stored on multiple nodes, and the postings lists
will contain global document IDs. To handle the inter-
processor communication between the parsing and index-
ing phases of the pipelined algorithm, we insert a separate
communication phase into the original pipeline. The latency
of the pipeline increases but we will introduce techniques to
ensure that the throughput will stay more or less the same.

The data flow of the partition-and-index approach is
illustrated in Fig. 6. Unlike the case of a single node where
all parsing or indexing threads share the same main
memory, the parsers and indexers are now spread across
the cluster and communicate through the interconnect
fabric (10 Gb/s InfiniBand or 1 GB/s Ethernet in our case).
This will be described in more details shortly.

4.1 Storage Model: Centralized Storage Pool versus
Distributed Storage

Every node of our cluster has two disks attached to it; in
addition, the cluster also has a 4 Gb/s link to a remote file
server managing hundreds of terabytes of storage. There-
fore, two storage models for handling the input and output
files are possible: 1) all files reside on the remote storage
pool; or 2) the files will be distributed to the disks attached
to the nodes. The remote storage pool model seems more
appealing for realistic scenarios since documents are
usually deposited in a centralized storage pool, processed
on a cluster, and then the inverted files are transferred to
another cluster for search and retrieval. In our case, our
storage pool model has a serious drawback, namely the
4 Gb/s bandwidth that cannot keep up with the necessary
throughput when we use more than eight nodes on our
cluster. The distributed storage model is similar to the
storage model used in MapReduce since a distributed file
system is used on the nodes of the cluster. Moreover, this
model can provide scalable I/O bandwidth as a function of
the nodes available. The output, including dictionary and
postings lists, is stored on local disks. We will test our
algorithm using both models.

4.2 Partitioning the Work among the Nodes

As in the case of the single node algorithm, the document
collection is divided into fixed-sized segments (typically 1 GB
WARC files) which are assigned to parallel parsers. In both
centralized and distributed storage models, read requests of
parallel parsers from the same node are serialized to avoid
contention on network interface or local disks. Note that,
under the centralized storage model, read requests from
different nodes have to compete for the 4 Gb/s connection to
the storage pool. In both cases, parallel parsers work
independent of each other except when reading the data
from external storage.

We now address the critical issue on how to assign the
workloads to the indexers as shown in Fig. 7. Prior to parsing,
we collect a document sample (specifically, a random 1 MB
from each 1 GB file) from the collection, parse it, and use the
parsed stream to determine an almost equal-size partition of
the trie collections into k ¼ N�P partitions, where N is the
number of indexers per node and P is the number of nodes.
We then use the k partitions to create a mapping between trie
collections and indexers, which will create a binding that will
persist throughput the processing of the document collec-
tion. As a result, the postings lists associated with a certain
trie collection will all be written to the same local disk of the
node where the corresponding indexer is running.

Another more elaborate strategy consists of a combina-
tion of sampling and dynamic round robin scheduling,
where trie collections are first assigned to the nodes rather
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than indexers using the sampling method, followed by a
dynamic round robin scheduling to allocate the work
among the indexers on each node. This strategy achieves
a better load balance than just sampling but the overall
throughput is not as good, due to cache locality that is
clearly enhanced when there is a persistent binding
between trie collections and indexers.

Once the parsers on a node process their documents, the
trie collections (each consisting of a document ID, followed
by the corresponding bag of words, another document ID
followed by its bag of words, and so on in sorted order by
document IDs) will be distributed to the nodes according to
the assignment determined by the sampling method.
Indexers on a node will start indexing at the same time
once the previous load is consumed and the next message
load arrives. Note that indexers from different nodes will
not necessarily start indexing at the same time because
messages may reach their destinations at different times.
Our main goal is to ensure that all parsers and indexers are
kept busy so as to achieve the maximum possible
throughput.

4.3 Communication Strategy between Parsers and
Indexers

A straightforward way to manage the communication
between parsers and indexers is to let each parser thread
construct and send P MPI messages after each segment is
parsed. This strategy does not work well when the number of
nodes is large due to the presence of many very small
messages as P increases. For example, consider the Clue-
Web09 collection, for which a segment is of size 1 GB and the
corresponding parsed stream is of size 130 MB. In this case,
the size of a message is about 4 MB when P ¼ 32, which only
takes about 8 ms time to send it from one node to another
using the 10 Gb/s InfiniBand and about 60 ms using the 1 Gb/
s Ethernet while the overhead to initialize such message is
comparable to the transmission time. We can increase the
collection segment size but we are limited by the memory size
of each node as we have to be able to accommodate the
segments for all the M parsers at the same time.

To address this problem, we introduce the notion of a
distributor to manage communication in the pipeline. The
job of a distributor on each node is to collect parsed results
from the parsers running on the node over several
segments, and then build the corresponding messages to
the P nodes as shown in Fig. 8. The size of each parsed
stream is much smaller than the original collection segment,
and hence the memory can accommodate the parsed results
of tens of segments. No changes are required for the
parsers, except that the parsed results are now consumed by
the distributor.

Another task of the distributor is to update the
document IDs before the messages are constructed. Docu-
ment IDs appearing in the parsed streams are local to each
collection segment; therefore these need to be modified into
DOC_IDs relative to the corresponding batch of parsed
results. The total number of documents is also included in
the messages distributed to indexers so that indexers can
calculate global offsets for DOC_IDs from the history of
document numbers.

4.4 Overall Data Flow on the Cluster

Putting all the pieces together, we get the overall data flow
shown in Fig. 9 for a cluster of multicore processors. Similar
to the single node case, we use synchronous communication
to enforce the sequence of messages processed by indexers,
that is, each node sequentially receives messages from node
1 through node P .

The data sizes or segment numbers processed by
different parsers in the cluster are not necessarily the same.
For example, in the distributed storage model data are not
split evenly among local disks on all nodes. In this scenario,
some parsers exit earlier than others (i.e., when all assigned
segments are processed), but all indexers stop when the last
batch is completed.
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5 EXPERIMENTAL RESULTS

We test the performance of our algorithm on a cluster with
32 nodes, each node holding two Intel Xeon X5560 Quad-
core CPUs and 210 GB disk. We use three significant
collections that exhibit different characteristics. We start
with ClueWeb09 English collection, which has been
heavily utilized as a benchmark by the information retrieval
community. Crawled between January and February 2009
by Language Technologies Institute at Carnegie Mellon
University, this data set includes 503,903,810 webpages
packed into 13,217 files of total size 1.89 TB compressed and
12.16 TB uncompressed. A subset of this collection, the first
English segment, is used to tune parameters and compare
results with previously published results. The second data
set is the Wikipedia01-07 data, which is derived from a
publicly available XML dump of Wikipedia articles created
on January 3rd 2008 with 83 monthly snapshots between
February 2001 and December 2007. The third collection is
the Congressional data set from the Library of Congress,
which includes weekly snapshots of selected news and
government websites crawled between May 2004 and
September 2005 by Internet Archive. The overall character-
istics of the four benchmarks are given in Table 1. The
number of terms and tokens may vary in different
implementations due to the choice of tokenization and
stemming procedures.

The generated output, postings lists and dictionary, are
written to local disks. We report results that are averaged
over three trials but we note that, in all our tests, the
differences between the fastest and slowest execution times
have been less than 5 percent. We first report the results on
the cluster using the 10Gb/s InfiniBand interconnect, and
later report the results for the case for the 1 Gb/s Ethernet
interconnect. Disk cache in memory is carefully cleared
prior to every experiment. The throughput numbers
correspond to the uncompressed collection size divided
by the corresponding total running time.

Before proceeding, we examine the format of the input
data to be processed by the parsers. A typical file of the
ClueWeb09 data set is about 160 MB compressed and 1 GB
uncompressed. On average, it takes about 1.6 seconds to
read such a compressed file from either a local disk or the
storage pool, and 3.2 seconds to decompress it. On the other
hand, it takes about 10 seconds to read the uncompressed
file. Therefore, we load the compressed files and then
decompress them in memory before parsing. There are two

possible options to proceed: decompression can be folded
into either the file read stage or can be performed as a
separate step after reading. The advantage of the former is
that decompression can be partially hidden by file reading
time if decompression starts whenever partial data become
available in memory, so the overall time for reading and
decompressing a file takes 3.8 seconds on average, which
translates into 263 MB/s intake bandwidth. The disadvan-
tage of this method is that the file access right cannot be
released to another parser until reading and decompression
are both completed. This causes a mismatch between the
data generated by the parsers and the data consumed by the
indexers. Hence, we choose the second scheme in which
decompression starts after the file is fully transferred to
memory. In this case, the average time to read a compressed
file is (1:6þ 3:2=M) seconds where M is the number of
parallel parsers. When M ¼ 6, the intake bandwidth
reaches as high as 467 MB/s.

In what follows, we start by determining the best values
of the numbers of parsers and indexers for the single node
algorithm (described in Section 3), which will be used as the
basis for our scalability results. This will be followed by
summarizing the performance of our single node algorithm
on the three document collections. We then show that our
cluster algorithm is scalable, relative to the optimized single
node algorithm, up to the largest number of available
nodes, using several scalability metrics. We end by
comparing the performance of our algorithm to the best
known results in the literature.

5.1 Optimal Numbers of Parallel Parsers and
Indexers on a Single Node

The performance of our single node algorithm on the
ClueWeb09 first English segment as a function of the
number M of parsers is shown in Fig. 10 under two
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TABLE 1
Statistics of Document Collections

Fig. 10. Optimal number of parallel parsers and indexers on a single
node.



scenarios: 1) M parsers and 8-M indexers; and 2) M parsers
without any indexers. The value of M varies from 1 to 7
since there are only eight cores on each node. The second
scenario illustrates the best possible throughput achieved
by just parsing the document collection.

When the number of parsers is within the range 1
through 6, we observe similar performance in both scenar-
ios, including an almost linear scalability as a function of the
number of parsers. This indicates that the indexers are
keeping up with the data generated by the parsers and
hence, within this range, the parsers constitute the slow
stage of the pipeline. The major limitations to speeding up
the parsers include the sequential access to the single disk
and the contention on cache and memory resources. Beyond
six parsers, when the number of indexers decreases, the
indexing pipeline stage is not able to catch up with the
parsing stage, indicating that a ratio of 6:2 between parsers
and indexers is the best possible on our single 8-core CPU.

5.2 Indexing Throughput and Dictionary Growth

Given that we have already determined that the best overall
performance on a single node is achieved by using six
parsers, we now take a closer look at the indexing
throughput of parallel indexers, not including the prepro-
cessing and the postprocessing steps. We track the time of
the parallel indexers spent on each file in the ClueWeb09
first English segment and compute the throughput for each
file as shown in Fig. 11. Note that starting with file index
1,201, we can see a significant drop in performance. This
can be explained by the fact that the files with indices from
1,201 to 1,492 all belong to Wikipedia.org, and hence they
exhibit a totally different behavior than the earlier docu-
ments. This portion of the Wikipedia files is relatively small
within the ClueWeb09 first English segment, and hence the
parameters determined by the sampling process do not
effectively reflect the characteristics of this small subset.

The overall slope consists of a sharp decrease near the
beginning followed by a trend that approaches a horizontal
line. This pattern correlates well with the inverse of the
depth of B-tree because as the B-trees grow deeper, it takes
more time to perform insert or search operations.

5.3 Performance of our Algorithm on Different
Document Collections

We show in Table 2 the overall throughput of our algorithm
on our three document collections. For all tests, six parsers
and two indexers are used to achieve the best performance.
The throughput achieved on the ClueWeb09 and Library of

Congress data sets is within the same ballpark. For the
Wikipedia01-07 collection, the HTML tags were removed,
and the remainder is just pure text. As we can see from
Table 1, the uncompressed size is only 1/18th of Clue-
Web09 first English segment, yet the numbers of documents
and tokens are about a third compared to those of the
ClueWeb09 first English segment. Hence, the slower than
100 MB/s throughput achieved on Wikipedia01-07 actually
amounts to a very high processing speed given the large
numbers of documents and tokens.

5.4 Scalability of the Cluster Algorithm Relative to
the Optimized Single Node Algorithm

We use three metrics to evaluate the scalability of our cluster
algorithm on a cluster with 32 nodes with multicore
processors—we measure throughput scalability by 1) in-
creasing the number of nodes with the same overall input
data; 2) increasing the number of nodes while keeping the
data size fixed per node; and 3) increasing the size of the data
on 32 nodes.

5.4.1 Scalability Relative to the Number of Nodes over

the Same Document Collection

Due to the limited size of local disks on each node, we can’t
store the first English segment of ClueWeb09 locally on less
than four nodes for the distributed storage model and hence
we measure performance on four or more nodes. In this
case, Table 3 shows the overall throughput and speedup
calculated relative to the best performance of the single
node algorithm, with six parsers and two indexers on each
node. Notice that the cluster implementation of our
algorithm running on a single node has almost the same
performance as the version tailored for a single node on the
storage pool model. When the number of nodes is less than
or equal to eight, we achieve almost linear scalability in
both storage models. With more than eight nodes, there is
limited improvement under the storage pool model since a
large number of nodes have to compete for the 4 Gb/s
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Fig. 11. Detailed throughput of parallel indexers.

TABLE 2
Performance Comparison on Different Document Collections

TABLE 3
Scalability over the Number of Nodes with Same Input Data



external link to data server; however, the throughput of the
distributed storage model continues to improve up to the
maximum number of nodes available to us. In particular,
the throughput on 32 nodes increases by a factor over 22
relative to the throughput of the best single node algorithm;
this translates into 6.12 GB/s throughput over 32 nodes.

We now take a closer look at the performance of our
algorithm when the centralized storage model is used. We
conduct tests that simulate the I/O behaviors of the storage
using 1 to 32 nodes, and compare the execution times with
those obtained by running our algorithm on the same
document collection (first English segment of ClueWeb09).
Two concurrent threads, one for input and the other for
output, are used. Since there is a scheduler in our case to
ensure that at any time at most one parser thread is reading
from the disk, only a single input thread is included in the
tests to just read the same document collection. After this
thread reads a segment (the same 1 GB as in our algorithm),
the output thread will write to disk certain data of the same
size as that of the postings lists produced by our algorithm.
Reading and writing may occur at the same time, and hence
such tests reflect the I/O pattern of our algorithm and as a
result they are able to capture the peak I/O throughput of
the underlying file system.

The numbers in Table 4 show that in the centralized
storage model our algorithm is processing the input at
almost the same rate at which the input can be read when
using 8, 16, and 32 nodes. This confirms the fact that the
throughput of our algorithm on the storage pool model is
limited by the link bandwidth when using more than eight
nodes, as shown in Fig. 12. Note that the peak reading
throughput is 350 MB/s (or 2.8 GB/s), which achieves near
70 percent of peak performance of the 4 Gb/s pipe.

On the other hand, the throughput for reading from the
local disks scales linearly under the distributed storage

model. However, the throughput of our algorithm is able to
catch up with at least 43 percent of the reading throughput.
Note that in our algorithm the pipeline may stall as
illustrated in Fig. 5, and there exist additional costs such
as sampling time, and therefore it would be difficult to
achieve better ratios.

In some cases, web crawling and indexing processes may
run concurrently in a streamed fashion, where a crawled
document collection is expected to be immediately pro-
cessed by parsers and indexers. In this streamed model, our
algorithm has a clear advantage over MapReduce because
in both centralized and distributed storage models, the
throughput of our algorithm is close to the peak I/O
bandwidth and hence document collections can be pro-
cessed as fast as they are streamed.

We next examine the best combination of the number of
parsers and the number of indexers for our cluster algorithm.
Note that we have earlier found that six parsers and two
indexers achieve the best performance on a single multicore
node. Fig. 13 shows the overall throughput of seven potential
combinations of (Number of Parsers, Number of Indexers)
using 4, 8, 16, and 32 nodes in distributed storage model. It is
clear that the combination 6:2 achieves the best performance
in all cases, and the streams are consumed at the same rate as
they are produced in this case.

We now shed additional light on the extent of load
balancing by comparing the relative numbers of inverted
files generated on each of the 32 nodes of our cluster. On
the first English segment of ClueWeb09 processed by 32
nodes, we set the average size of inverted files on a node to
1. Then, the maximum size of inverted files on any node is
1.128 and the minimum is 0.834 with a standard deviation
of 0.0678. This indicates a very good load balance between
the 32 nodes.

5.4.2 Scalability Relative to the Number of Nodes with

Fixed Data Size per Node

After placing 45 GB of uncompressed document collection
(part of the first English segment of ClueWeb09) on each
node, we examine the scalability of our algorithm as the
number of nodes increases from 1 to 32. The performance
results are listed in Table 5. The execution time degrades
slightly as the number of nodes increases. This degradation
is to be expected since the size of document collection
grows linearly with the number of nodes, and hence the
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TABLE 4
Ratio of the Throughput of Our Algorithm

and Peak I/O Throughput

Fig. 12. Scalability over the number of nodes with same input data.

Fig. 13. Optimal number of parsers and indexers on cluster in distributed
model.



dictionary becomes much larger when P ¼ 32 compared to
the case when P ¼ 1.

5.4.3 Scalability over Data Size

Fig. 14 shows the scalability as a function of the input size
with the algorithm running on 32 nodes. We start with the
first English segment of ClueWeb09, then add the second
English segment, and continue until all the ten English
segments are there. The running time is a linear function of
the input size with a variance of R2 ¼ 0:9985. This implies
that our algorithm has stable throughput regardless of the
collection size. Since we transfer postings lists to disks after
each single run and the buffer size required by parsers is
fixed, the only growing part of our pipelined algorithm is
the dictionary size. As long as each local part of the
dictionary can fit in the node’s main memory, our algorithm
is linear as a function of the input size since the dictionary
size grows very slowly after the first few runs.

5.5 Performance Results under the 1 Gb/s Ethernet
Interconnect

So far we have determined how to achieve balanced
performance between parsers and indexers using the
10 Gb/s InfiniBand as the interconnection fabric. However,
such expensive network interface is not used on MapReduce
clusters. To conduct a fair comparison, we perform
experiments using the 1 Gb/s Ethernet interconnect on
our cluster.

Let’s first take a look at the impact of network speed in
an ideal parsing pipeline where each pipeline stage takes
constant time with no idle time for each parsing thread. In
our implementation we enforce that the buffer containing
the parsed result must be cleared by the distributor before
the parsing thread could start processing the next
segment. After collecting all the parsed results from parser
1 to parser M, the distributor will send the parsed data to

the appropriate destination nodes. Before this type of
communication is executed, the distributor cannot collect
any parsed results and hence if at this time a parser
finishes the next parsing round, it has to wait until the
distributor has completed its data exchange task. An
example is shown in Fig. 15, where parser 1 becomes idle
since it finishes its second parsing round before the end of
the data exchange of the previous round.

To prevent such stalls in the pipeline, the following
equation must be satisfied:

TP � ðM � 2ÞTD � TN;

where TP is the parsing time, M is the number of parsers on
one node, TD is the time to read the compressed segment
from disk, and TN is the time to distribute the parsed results
over the network. On average, the processing of 1 GB
uncompressed ClueWeb09 data, we have TD ¼ 1:6 seconds,
TP ¼ 16 seconds, and TN ¼ 1:9 seconds when the Ethernet
interconnect is used, or TN ¼ 0:26 second when the Infini-
Band is used. As a result, we obtain that the number of
parsers on each node has the following upper bound: M � 5
with Ethernet and M � 10 with InfiniBand. This argument
presents an analysis of the impact of the network character-
istics assuming that we have to achieve an ideal pipeline.

From the experimental results with 32 nodes shown in
Fig. 16, we have the following results:

. The optimal combination when using Ethernet is
four parsers and three indexers, which is very close
to the bound M � 5 limit we calculated above;

. When the number of parsers varies from four to six,
better throughput is obtained from fewer parsers
when the number of indexers is fixed to either two
or three;

. With four or five parsers, increasing the number of
indexers from two to three leads to higher through-
put because more indexers can consume data
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Fig. 14. Scalability over the size of input documents.

Fig. 15. Impact of distribute time in the ideal pipeline.

Fig. 16. Performance on 32 nodes using the 1 Gb/s Ethernet.

TABLE 5
Scalability over the Number of Nodes

with Fixed Data Size per Node



streams faster and therefore the indexing stage is
less likely to impede the speed of the pipeline;

. There is no benefit from using more than three
indexers and in fact it is better to let the remaining
CPU cores serve the operating system and network
processes rather than trying to consume nonexistent
parsed data.

. The optimal throughput with Ethernet is about
89 percent of that achieved with InfiniBand assum-
ing the same parameter configuration and 82 percent
of the best throughput possible with InfiniBand.

5.6 Comparison with Fastest Known MapReduce
Indexers

In this section, we compare the performance of our
algorithm with the best known MapReduce algorithms that
appeared in the literature, namely Ivory MapReduce [9], [10]
and Terrier MapReduce [8] on exactly same ClueWeb09 first
English segment data set. Both of these algorithms are
implemented using the MapReduce framework, and hence
the comparison is somewhat unreasonable since these are
high-level algorithms that do not exploit the underlying
architectures. The Ivory MapReduce tests are conducted on
exactly the same ClueWeb09 collection as ours using a
cluster of either 99 or 280 nodes, each node having two cores.
Positional postings lists are generated by the Ivory MapRe-
duce algorithm, which will add an extra overhead. For a
better comparison, we also modified our software to include
positional information. In our experiments, our algorithm
on single node is 7 percent slower and about 10 percent
slower on the cluster, while the resulting postings lists are
about 1.6 times larger. The slowdown is slightly higher on
the cluster because we have to transfer more intermediate
results over the cluster interconnect. According to [11], their
Ivory MapReduce implementation with positional indexes
is about 1.2 times slower compared to nonpositional
indexes, which is very close to the 1.6 times increase in
postings lists size. We believe that this result is due to the

fact that under the MapReduce framework, intermediate
results are written to disks and shuffled in between Map and
Reduce, a process that is more sensitive to the increase in
data size. In our algorithm, dictionary lookup or B-tree
search operation consumes the majority of CPU cycles and
as a result structural changes in postings lists should not
introduce a significant overhead. Parsing and indexing
times are reported separately in [10], 54.3 minutes for
parsing and 29.6 minutes for indexing with 280 nodes, and
the throughput is calculated by dividing uncompressed size
by the sum of the these two numbers. On the other hand, the
Terrier MapReduce algorithm uses a cluster of 30 nodes
with a total of 240 cores on the same ClueWeb09 collection.
Originally while computing the throughput they used
compressed data size and we’ve translated that into our
metric using uncompressed data size. The main features of
the platforms are captured in Table 6.

It is clear that the throughput of our pipelined and
parallel indexing algorithm using the 1 Gb/s Ethernet is
substantially higher even when compared to the two
algorithms running on larger clusters. We note that this
comparison has its significant shortcomings, but it still
provides a clear indication of the effectiveness of the
approach described in this paper.

The scalability of Ivory MapReduce does not seem to be
linear since the throughput only increases by 73 percent
when the number of nodes is tripled, but the improvement
is still significant given the fact that hundreds of nodes are
involved. On the other hand, Terrier MapReduce scales
almost linearly within the range of 30 nodes.

6 CONCLUSION

We introduced a new pipelined strategy for constructing
inverted files on a cluster of multicore processors, which
can process documents near the peak I/O rate of the cluster.
Several key elements were developed to achieve the
optimized throughput, including:
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. Combined pipelining and parallelism that match
maximum possible parsing throughput with parallel
indexing on available resources;

. A hybrid trie and B-tree dictionary data structure, in
which the logical trie is implemented as a table for
fast look-up and each B-Tree includes character
caches to expedite term string comparisons;

. Assignment of parsed substreams to indexers using
a random sampling preprocessing step;

. Development of a fully parallelized scheme that
makes efficient use of available cores on a single
node as well as across the cluster;

. Careful management of communication resulting in
hiding the interprocessor communication overhead.

Our strategy significantly outperforms the best known
MapReduce algorithms in the literature and achieves a
throughput that is close to the peak I/O of the underlying
system. This work sheds some light on the potential
performance cost incurred in using the higher level
MapReduce programming model.
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