
Challenges in Building Large-Scale Information
Retrieval Systems

Jeff Dean
Google Fellow

jeff@google.com

mailto:jeff@google.com
mailto:jeff@google.com
mailto:jeff@google.com
mailto:jeff@google.com

• Challenging blend of science and engineering

– Many interesting, unsolved problems

– Spans many areas of CS:
• architecture, distributed systems, algorithms, compression,

information retrieval, machine learning, UI, etc.

– Scale far larger than most other systems

• Small teams can create systems used by
hundreds of millions

Why Work on Retrieval Systems?

• Must balance engineering tradeoffs between:

– number of documents indexed

– queries / sec

– index freshness/update rate

– query latency

– information kept about each document

– complexity/cost of scoring/retrieval algorithms

• Engineering difficulty roughly equal to the
product of these parameters

• All of these affect overall performance, and
performance per $

Retrieval System Dimensions

• # docs: ~70M to many billion

• queries processed/day:

• per doc info in index:

• update latency: months to minutes

• avg. query latency: <1s to <0.2s

• More machines * faster machines:

1999 vs. 2009

• # docs: ~70M to many billion

• queries processed/day:

• per doc info in index:

• update latency: months to minutes

• avg. query latency: <1s to <0.2s

• More machines * faster machines:

1999 vs. 2009

~100X

• # docs: ~70M to many billion

• queries processed/day:

• per doc info in index:

• update latency: months to minutes

• avg. query latency: <1s to <0.2s

• More machines * faster machines:

1999 vs. 2009

~100X

~1000X

• # docs: ~70M to many billion

• queries processed/day:

• per doc info in index:

• update latency: months to minutes

• avg. query latency: <1s to <0.2s

• More machines * faster machines:

1999 vs. 2009

~100X

~3X

~1000X

• # docs: ~70M to many billion

• queries processed/day:

• per doc info in index:

• update latency: months to minutes

• avg. query latency: <1s to <0.2s

• More machines * faster machines:

1999 vs. 2009

~100X

~3X

~1000X

~10000X

• # docs: ~70M to many billion

• queries processed/day:

• per doc info in index:

• update latency: months to minutes

• avg. query latency: <1s to <0.2s

• More machines * faster machines:

1999 vs. 2009

~100X

~3X

~1000X

~10000X

~5X

• # docs: ~70M to many billion

• queries processed/day:

• per doc info in index:

• update latency: months to minutes

• avg. query latency: <1s to <0.2s

• More machines * faster machines:

1999 vs. 2009

~100X

~3X

~1000X

~10000X

~5X

~1000X

• Parameters change over time

– often by many orders of magnitude

• Right design at X may be very wrong at 10X or 100X
– ... design for ~10X growth, but plan to rewrite before ~100X

• Continuous evolution:

– 7 significant revisions in last 10 years

– often rolled out without users realizing we’ve made
major changes

Constant Change

• Evolution of Google’s search systems

– several gens of crawling/indexing/serving systems

– brief description of supporting infrastructure

– Joint work with many, many people

• Interesting directions and challenges

Rest of Talk

“Google” Circa 1997 (google.stanford.edu)

Research Project, circa 1997

Frontend Web Server

I0 I1 I2 IN

Index shards

D0 D1 DM

query

Index servers Doc servers

⋯ ⋯
Doc shards

• By doc: each shard has index for subset of docs
– pro: each shard can process queries independently

– pro: easy to keep additional per-doc information

– pro: network traffic (requests/responses) small

– con: query has to be processed by each shard

– con: O(K*N) disk seeks for K word query on N shards

Ways of Index Partitioning

• By doc: each shard has index for subset of docs
– pro: each shard can process queries independently

– pro: easy to keep additional per-doc information

– pro: network traffic (requests/responses) small

– con: query has to be processed by each shard

– con: O(K*N) disk seeks for K word query on N shards

Ways of Index Partitioning

• By word: shard has subset of words for all docs
– pro: K word query => handled by at most K shards

– pro: O(K) disk seeks for K word query

– con: much higher network bandwidth needed
• data about each word for each matching doc must be collected in

one place

– con: harder to have per-doc information

Ways of Index Partitioning

In our computing environment, by doc makes more sense

• Documents assigned small integer ids (docids)

– good if smaller for higher quality/more important docs

• Index Servers:

– given (query) return sorted list of (score, docid, ...)

– partitioned (“sharded”) by docid

– index shards are replicated for capacity

– cost is O(# queries * # docs in index)

• Doc Servers

– given (docid, query) generate (title, snippet)

– map from docid to full text of docs on disk

– also partitioned by docid

– cost is O(# queries)

Basic Principles

“Corkboards” (1999)

Serving System, circa 1999

Frontend Web Server

I0 I1 I2 IN

I0 I1 I2 IN

I0 I1 I2 IN

R
e
p
lic
a
s ⋯

⋯

Index shards

D0 D1 DM

D0 D1 DM

D0 D1 DM
R
e
p
lic
a
s ⋯

⋯
Doc shards

query

Index servers

Cache servers

C0 C1 CK⋯

Doc servers

Ad System

• Cache servers:

– cache both index results and doc snippets

– hit rates typically 30-60%
• depends on frequency of index updates, mix of query traffic,

level of personalization, etc

• Main benefits:

– performance! 10s of machines do work of 100s or 1000s

– reduce query latency on hits

• queries that hit in cache tend to be both popular and
expensive (common words, lots of documents to score, etc.)

• Beware: big latency spike/capacity drop when
index updated or cache flushed

Caching

• Simple batch crawling system

– start with a few URLs

– crawl pages

– extract links, add to queue

– stop when you have enough pages

• Concerns:

– don’t hit any site too hard

– prioritizing among uncrawled pages
• one way: continuously compute PageRank on changing graph

– maintaining uncrawled URL queue efficiently
• one way: keep in a partitioned set of servers

– dealing with machine failures

Crawling (circa 1998-1999)

• Simple batch indexing system

– Based on simple unix tools

– No real checkpointing, so machine failures painful

– No checksumming of raw data, so hardware bit errors
caused problems

• Exacerbated by early machines having no ECC, no parity

• Sort 1 TB of data without parity: ends up "mostly sorted"

• Sort it again: "mostly sorted" another way

• “Programming with adversarial memory”

– Led us to develop a file abstraction that stored
checksums of small records and could skip and
resynchronize after corrupted records

Indexing (circa 1998-1999)

• 1998-1999: Index updates (~once per month):

– Wait until traffic is low

– Take some replicas offline

– Copy new index to these replicas

– Start new frontends pointing at updated index and
serve some traffic from there

Index Updates (circa 1998-1999)

• Index server disk:

– outer part of disk gives higher disk bandwidth

Index Updates (circa 1998-1999)

Oct99 index

• Index server disk:

– outer part of disk gives higher disk bandwidth

Index Updates (circa 1998-1999)

Oct99 index

Nov99 index

1. Copy new index to inner half of disk
(while still serving old index)

2. Restart to use new index

• Index server disk:

– outer part of disk gives higher disk bandwidth

Index Updates (circa 1998-1999)

Nov99 index

1. Copy new index to inner half of disk
(while still serving old index)

2. Restart to use new index

3. Wipe old index

• Index server disk:

– outer part of disk gives higher disk bandwidth

Index Updates (circa 1998-1999)

Nov99 index

Nov99 index

1. Copy new index to inner half of disk
(while still serving old index)

2. Restart to use new index

3. Wipe old index

4. Re-copy new index to faster half of disk

• Index server disk:

– outer part of disk gives higher disk bandwidth

Index Updates (circa 1998-1999)

Nov99 index
1. Copy new index to inner half of disk
(while still serving old index)

2. Restart to use new index

3. Wipe old index

5. Wipe first copy of new index

4. Re-copy new index to faster half of disk

• Index server disk:

– outer part of disk gives higher disk bandwidth

Index Updates (circa 1998-1999)

Nov99 index
1. Copy new index to inner half of disk
(while still serving old index)

2. Restart to use new index

3. Wipe old index

5. Wipe first copy of new index

6. Inner half now free for building various
performance improving data structures

4. Re-copy new index to faster half of disk

Pair cache: pre-intersected pairs of posting lists for commonly co-
occurring query terms (e.g. “new” and “york”, or “barcelona” and
“restaurants”)

Nov99
pair cache

Google Data Center (2000)

Google Data Center (2000)

Google Data Center (2000)

Google (new data center 2001)

Google Data Center (3 days later)

• Huge increases in index size in ’99, ’00, ’01, ...
– From ~50M pages to more than 1000M pages

• At same time as huge traffic increases
– ~20% growth per month in 1999, 2000, ...

– ... plus major new partners (e.g. Yahoo in July 2000
doubled traffic overnight)

• Performance of index servers was paramount
– Deploying more machines continuously, but...

– Needed ~10-30% software-based improvement every
month

Increasing Index Size and Query Capacity

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers
R
e
p
lic
a
s

Index shards

I0 I1 I2

I0 I1 I2

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers
R
e
p
lic
a
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers
R
e
p
lic
a
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers
R
e
p
lic
a
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers
R
e
p
lic
a
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

I10⋯
I10⋯
I10⋯

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers
R
e
p
lic
a
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

I10⋯
I10⋯
I10⋯

I0 I1 I2 I3 I4 I10⋯

⋯ ⋯

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers
R
e
p
lic
a
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

I10⋯
I10⋯
I10⋯

I0 I1 I2 I3 I4 I10⋯

⋯ ⋯

I60⋯
I60⋯
I60⋯

I60⋯

⋯

• Shard response time influenced by:

– # of disk seeks that must be done

– amount of data to be read from disk

• Big performance improvements possible with:

– better disk scheduling

– improved index encoding

Implications

• Original encoding (’97) was very simple:

– hit: position plus attributes (font size, title, etc.)

– Eventually added skip tables for large posting lists

• Simple, byte aligned format

– cheap to decode, but not very compact

– ... required lots of disk bandwidth

Index Encoding circa 1997-1999

docid+nhits:32b hit: 16b hit: 16b ⋯ hit: 16bdocid+nhits:32bWORD

• Bit-level encodings:

– Unary: N ‘1’s followed by a ‘0’

– Gamma: log2(N) in unary, then floor(log2(N)) bits

– RiceK: floor(N / 2K) in unary, then N mod 2K in K bits

• special case of Golomb codes where base is power of 2

– Huffman-Int: like Gamma, except log2(N) is Huffman
coded instead of encoded w/ Unary

• Byte-aligned encodings:

– varint: 7 bits per byte with a continuation bit

• 0-127: 1 byte, 128-4095: 2 bytes, ...

– ...

Encoding Techniques

Block-Based Index Format

• Block-based, variable-len format reduced both
space and CPU

delta to last docid in block: varint

encoding type: Gamma # docs in block: Gamma

N -1 docid deltas: Ricek coded

N values of # hits per doc: Gamma

H hit attributes: run length Huffman encoded

H hit positions: Huffman-Int encoded

block length: varint

• Reduced index size by ~30%, plus much faster
to decode

Block 0 Block 1 ⋯Block 2 Block NSkip table(if large)WORD

Block format (with N documents and H hits):

Byte aligned header

• Must add shards to keep response time low as
index size increases

• ... but query cost increases with # of shards

– typically >= 1 disk seek / shard / query term

– even for very rare terms

• As # of replicas increases, total amount of
memory available increases

– Eventually, have enough memory to hold an entire
copy of the index in memory

• radically changes many design parameters

Implications of Ever-Wider Sharding

Early 2001: In-Memory Index

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Index shards

Shard 0

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Shard 1

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Shard 2

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Shard N

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Balancers

⋯

• Many positives:

– big increase in throughput

– big decrease in latency
• especially at the tail: expensive queries that previously

needed GBs of disk I/O became much faster

e.g. [“circle of life”]

• Some issues:

– Variance: touch 1000s of machines, not dozens

• e.g. randomized cron jobs caused us trouble for a while

– Availability: 1 or few replicas of each doc’s index data

• Queries of death that kill all the backends at once: very bad

• Availability of index data when machine failed (esp for
important docs): replicate important docs

In-Memory Indexing Systems

Larger-Scale Computing

• In-house rack design

• PC-class motherboards

• Low-end storage and
networking hardware

• Linux

• + in-house software

Current Machines

Serving Design, 2004 edition

Root

…

…

Parent
Servers

…
…

Leaf
Servers

Repository
Shards

…

Repository
Manager

File
Loaders

Cache servers

Requests

GFS

New Index Format

• Block index format used two-level scheme:

– Each hit was encoded as (docid, word position in doc) pair

– Docid deltas encoded with Rice encoding

– Very good compression (originally designed for disk-based
indices), but slow/CPU-intensive to decode

• New format: single flat position space

– Data structures on side keep track of doc boundaries

– Posting lists are just lists of delta-encoded positions

– Need to be compact (can’t afford 32 bit value per occurrence)

– … but need to be very fast to decode

Byte-Aligned Variable-length Encodings

• Varint encoding:
– 7 bits per byte with continuation bit

– Con: Decoding requires lots of branches/shifts/masks

0000111100000001 0000001111111111 1111111111111111 00000111

1 15 511 131071

Byte-Aligned Variable-length Encodings

• Varint encoding:
– 7 bits per byte with continuation bit

– Con: Decoding requires lots of branches/shifts/masks

0000111100000001 0000001111111111 1111111111111111 00000111

1 15 511 131071

• Idea: Encode byte length as low 2 bits
– Better: fewer branches, shifts, and masks

– Con: Limited to 30-bit values, still some shifting to decode

0000111100000001 0000001101111111 1111111110111111 00000111

1 15 511 131071

Group Varint Encoding

• Idea: encode groups of 4 values in 5-17 bytes
– Pull out 4 2-bit binary lengths into single byte prefix

Group Varint Encoding

• Idea: encode groups of 4 values in 5-17 bytes
– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000001101111111 1111111110111111 00000111

Group Varint Encoding

• Idea: encode groups of 4 values in 5-17 bytes
– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000001101111111 1111111110111111 00000111

00000110

Tags

Group Varint Encoding

• Idea: encode groups of 4 values in 5-17 bytes
– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000001101111111 1111111110111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

Group Varint Encoding

• Idea: encode groups of 4 values in 5-17 bytes
– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000001101111111 1111111110111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

• Decode: Load prefix byte and use value to lookup in 256-entry table:

Group Varint Encoding

• Idea: encode groups of 4 values in 5-17 bytes
– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000001101111111 1111111110111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

• Decode: Load prefix byte and use value to lookup in 256-entry table:

00000110 Offsets: +1,+2,+3,+5; Masks: ff, ff, ffff, ffffff
⋯
⋯

Group Varint Encoding

• Idea: encode groups of 4 values in 5-17 bytes
– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000001101111111 1111111110111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

• Much faster than alternatives:
– 7-bit-per-byte varint: decode ~180M numbers/second

– 30-bit Varint w/ 2-bit length: decode ~240M numbers/second

– Group varint: decode ~400M numbers/second

• Decode: Load prefix byte and use value to lookup in 256-entry table:

00000110 Offsets: +1,+2,+3,+5; Masks: ff, ff, ffff, ffffff
⋯
⋯

2007: Universal Search

Frontend Web Server

query

Cache servers

Ad System

News

Super root

Images

Web

Blogs
Video

Books

Local

Indexing Service

• Low-latency crawling and indexing is tough

– crawl heuristics: what pages should be crawled?

– crawling system: need to crawl pages quickly

– indexing system: depends on global data

• PageRank, anchor text of pages that point to the page, etc.

• must have online approximations for these global properties

– serving system: must be prepared to accept updates
while serving requests

• very different data structures than batch update serving
system

Index that? Just a minute!

• Ease of experimentation hugely important

– faster turnaround => more exps => more improvement

• Some experiments are easy

– e.g. just weight existing data differently

• Others are more difficult to perform: need data
not present in production index

– Must be easy to generate and incorporate new data
and use it in experiments

Flexibility & Experimentation in IR Systems

• Several key pieces of infrastructure:

– GFS: large-scale distributed file system

– MapReduce: makes it easy to write/run large scale jobs

• generate production index data more quickly

• perform ad-hoc experiments more rapidly

• ...

– BigTable: semi-structured storage system

• online, efficient access to per-document information at any
time

• multiple processes can update per-doc info asynchronously

• critical for updating documents in minutes instead of hours

http://labs.google.com/papers/gfs.html

http://labs.google.com/papers/mapreduce.html

http://labs.google.com/papers/bigtable.html

Infrastructure for Search Systems

http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html

• Start with new ranking idea

• Must be easy to run experiments, and to do so
quickly:
– Use tools like MapReduce, BigTable, to generate data...

– Initially, run off-line experiment & examine effects

• ...on human-rated query sets of various kinds

• ...on random queries, to look at changes to existing ranking

– Latency and throughput of this prototype don't matter

• ...iterate, based on results of experiments ...

Experimental Cycle, Part 1

• Once off-line experiments look promising, want
to run live experiment

– Experiment on tiny sliver of user traffic

– Random sample, usually
• but sometimes a sample of specific class of queries

– e.g. English queries, or queries with place names, etc.

• For this, throughput not important, but latency matters

– Experimental framework must operate at close to
production latencies!

Experimental Cycle, Part 2

• Launch!

• Performance tuning/reimplementation to make
feasible at full load
– e.g. precompute data rather than computing at runtime

– e.g. approximate if "good enough" but much cheaper

• Rollout process important:

– Continuously make quality vs. cost tradeoffs

– Rapid rollouts at odds with low latency and site stability

• Need good working relationships between search quality and
groups chartered to make things fast and stable

Experiment Looks Good: Now What?

• A few closing thoughts on interesting directions...

Future Directions & Challenges

• Translate all the world’s documents to all the
world’s languages

– increases index size substantially

– computationally expensive

– ... but huge benefits if done well

• Challenges:

– continuously improving translation quality

– large-scale systems work to deal with larger and more
complex language models

• to translate one sentence ⇒ ~1M lookups in multi-TB model

Cross-Language Information Retrieval

ACLs in Information Retrieval Systems

• Retrieval systems with mix of private, semi-
private, widely shared and public documents

– e.g. e-mail vs. shared doc among 10 people vs.
messages in group with 100,000 members vs. public
web pages

• Challenge: building retrieval systems that
efficiently deal with ACLs that vary widely in size

– best solution for doc shared with 10 people is different
than for doc shared with the world

– sharing patterns of a document might change over
time

Automatic Construction of Efficient IR Systems

• Currently use several retrieval systems

– e.g. one system for sub-second update latencies, one for
very large # of documents but daily updates, ...

– common interfaces, but very different implementations
primarily for efficiency

– works well, but lots of effort to build, maintain and extend
different systems

• Challenge: can we have a single parameterizable
system that automatically constructs efficient
retrieval system based on these parameters?

Information Extraction from Semi-structured Data

• Data with clearly labelled semantic meaning is a tiny
fraction of all the data in the world

• But there’s lots semi-structured data

– books & web pages with tables, data behind forms, ...

• Challenge: algorithms/techniques for improved
extraction of structured information from
unstructured/semi-structured sources

– noisy data, but lots of redundancy

– want to be able to correlate/combine/aggregate info from
different sources

In Conclusion...

• Designing and building large-scale retrieval systems
is a challenging, fun endeavor

– new problems require continuous evolution

– work benefits many users

– new retrieval techniques often require new
systems

• Thanks for your attention!

Thanks! Questions...?

• Further reading:
Ghemawat, Gobioff, & Leung. Google File System, SOSP 2003.

Barroso, Dean, & Hölzle. Web Search for a Planet: The Google Cluster Architecture, IEEE

Micro, 2003.

Dean & Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004.

Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber. Bigtable: A
Distributed Storage System for Structured Data, OSDI 2006.

Brants, Popat, Xu, Och, & Dean. Large Language Models in Machine Translation, EMNLP
2007.

• These and many more available at:

http://labs.google.com/papers.html

http://labs.google.com/papers.html
http://labs.google.com/papers.html

