
Mul$dimensional-Data


Data$Visualiza+on$|$Steven$Bedrick$&$Jackie$Wirz$
Image$from$xkcd.com$hAp://xkcd.com/503/$
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Krzywinski$and$Savig$“Points$of$view:$Mul+dimensional$data”$$Nature$
Methods$10,$$$$595$(2013)$doi:10.1038/nmeth.2531$$



Charles Joseph Minard map of Napoleon's disastrous Russian campaign of 1812 (1869)$



Wiley, Thompson and Merrick: Realigning the Boston Traffic Separation Scheme (2006): 
http://scimaps.org/V.3$



Mul$variate-

Too$many$dimensions$$



http://www.herbalwater.com/herbs-and-ingredients/orange-peel.aspx$

3D$Spheres$do$not$flaAen$well…$



Nth$Dimensional$Data$Needs$to$be$
Projected$onto$2D$

http://www.herbalwater.com/herbs-and-ingredients/orange-peel.aspx$



The$Fundamental$Problem$

•  Each$aAribute$defines$a$dimension$

•  Small$#$of$dimensions$easy$

•  Data$mapping,$Cleveland’s$rules$

•  What$about$many$dimensional$data?$$The$real$

stuff$that$occurs$in$the$real$world?$$$$

$



The$Fundamental$Problem$

Slide modified from Alexander Lex, Harvard$



Iris-Data-Set

Fisher's$Iris$data$set$is$a$mul+variate$data$set$

introduced$by$Sir$Ronald$Fisher$(1936)$as$an$example$
of$discriminant$analysis$













Bubbly

Symbolically$Speaking$



The$Bubble$Plot$

Horizontal$posi+on:$Con+nuous$data$$
$
Ver+cal$posi+on:$$Con+nuous$data$$
$
Circle$area:$$Numerical$data$$
$
Circle$color:$$Numerical$or$categorical*data*



The$Bubble$Plot$
Able$to$encode$four$dimensions$of$data$$
$

$Ideal'if'one'dimension'is'categorical'(color)''
$
Rough$comparison$possible$$
$

$Beware$comparing$circle$areas!$
$
Obscuring$data$may$be$an$issue$$
$

$Large$circles$should$be$behind$smaller$ones$$
$

$Issues$increases$with$density$



The$(new$classic)$Bubble$Plot$

hAp://en.wikipedia.org/wiki/Trendalyzer#mediaviewer/File:Gapminder_world.png$



The$(new$classic)$Bubble$Plot$

hAp://beAerevalua+on.org/sites/default/files/BubbleChartImage1.png$











hAp://bit.ly/11uDrIH$



The$Academic$Bubble$Plot$

hAp://www.maAhewmaenner.com/blog/wpocontent/uploads/2010/11/Fig3.png$



The$Bubble$Plot$(sort$of)$

hAp://www.ny+mes.com/interac+ve/2012/09/06/us/poli+cs/conven+onowordocounts.html?_r=1&#science$



Sca9er-Plots-&-
Sca9erplot-Matrices

Symbolically$Speaking$



ScaAers$
ScaAerplot$$

$Horizontal$posi+on$maps$to$one$variable$$
$Ver+cal$posi+on$maps$to$another$variable$$

$
Matrix$of$scaAerplots$$

$Each$scaAerplot$focuses$on$one$pair$$
$Which$pair$is$determined$by$row$and$column$
$Good$for$explora+on$and$comparison$
$ $–$Can$be$a$liAle$overwhelming$at$first$

$
Limited$scalability$



Nathan$Yau$“Visualize$This”$2011$



Nathan$Yau$“Visualize$This”$2011$Chapter$6$



Nathan$Yau$“Visualize$This”$2011$Chapter$6$



hAp://mbostock.github.io/d3/talk/20111116/irisosplom.html$



Small-Mul$ples…-

Not$scaAer$but$you$get$the$idea…$



hAp://flowingdata.com/2010/06/28/doomovieosequelsoliveoupotootheirooriginals/$



hAp://bl.ocks.org/mbostock/1157787$



Glyph-Plots

Symbolically$Speaking$



Star$Plots$

Add$addi+onal$axes$in$a$radial$
fashion$

•  Can$be$overwhelming;$occlude$
data$

$
Lends$itself$to$“circular”$
rela+onships$

•  Time$
$
$
$

$

d1$
d2$

d3$

d4$d5$

d6$

d7$



Star$Plots$

hAp://www.infovis.net/printMag.php?num=201&lang=2$



Star$Plots$



“Any reasonable number of values can be plotted in star glyph fashion”*

hAp://laboratoryomanager.advanceweb.com/$



Chernoff$Faces$

10$Parameters:$
•  Head$Eccentricity$$
•  Eye$Eccentricity$$
•  Pupil$Size$$
•  Eyebrow$Slope$$
•  Nose$Size$$
•  Mouth$Ver+cal$Offset$$
•  Eye$Spacing$$
•  Eye$Size$$
•  Mouth$Width$$
•  Mouth$Openness$$

$



Chernoff$Faces$

hAp://flowingdata.com/2010/08/31/howotoovisualizeodataowithocartoonishofaces/$



Chernoff$Faces$

hAp://flowingdata.com/2010/08/31/howotoovisualizeodataowithocartoonishofaces/$



Chernoff$Faces$

hAp://flowingdata.com/2010/08/31/howotoovisualizeodataowithocartoonishofaces/$



Chernoff$Schools$

hAp://berglondon.com/blog/tag/chernoffofaces/$



http://www.alexreisner.com/baseball/chernoff-faces$

Some+mes$less$successful…$



Parallel-Coordinates

Not$scaAer$but$you$get$the$idea…$



Parallel$Plots$

Create$one$ver+cal$line$for$every$variable$

$Minimum$and$Maximum$values$/$mul+ple$scales$

Plot$every$en+ty$across$each$variable$

$Line$connects$values$for$a$single$en+ty$
Picture'an'xy'sca7erplot,'but'pu;ng'both'axis'lines'ver>cally''

No$zero$point$for$singulari+es$

BeAer$balance$of$ink/data$ra+o,$although$can$be$abused$
'



Nathan Yau “Visualize This” 2011 and “Data Points” 2013$

RELATIVE*SCALES$
Axes$span$

minimum$to$
maximum$for$
each$variable.$

CONNECTING*LINES$
One$line$per$unit;$look$for$common'trends'

across$mul+ple$units$

VARIABLES$
Mul+ple$axes$placed$parallel$to$each$other$

to$find$rela+onships$across'variables'



Nathan Yau “Visualize This” 2011 and “Data Points” 2013$

RELATIVE*SCALES$
Axes$span$

minimum$to$
maximum$for$
each$variable.$



http://www.infovis.net/imagenes/T1_N201_A1398_InfoScopeBcn.gif$



http://www.cc.gatech.edu/~stasko/7450/Notes/multivar1.pdf courtesy J Yang$



http://old.vrvis.at/via/research/ang-brush/teaser.gif$



Krzywinski$and$Savig$“Points$of$view:$Mul+dimensional$data”$$Nature$
Methods$10,$$$$595$(2013)$doi:10.1038/nmeth.2531$$



http://www.syracuse.com/news/index.ssf/2010/01/
data_mining_helps_new_york_cat.html$

Fight$Crime$with$Parallel$Plots!$



Heatmaps/Matrix-Plots

So$colorful!$



A-common-problem:-3Gdimensional-data


Data$with$three$dimensions:$

+meopoint,$molarity,$expression$level$

treatment$group,$loca+on,$intensity$

One“solu$on”:-3Gdimensional-bar-graphs


XoY$loca+on$+$some$other$con+nuous$value$



hAp://www.originlab.com/index.aspx?go=Products/Origin/Graphing$
hAp://www.mathworks.com/matlabcentral/fileexchange/35274omatlaboplotogalleryobarographo3d/content/html/Bar_Plot_3D.html$



These-are-almost-never-a-good-idea.
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expression or biological networks do not generally benefit from 3D 
spatial representations and are most useful when plotted using tech-
niques that do not require depth cues.

In most instances, high-dimensional data can be reliably and effi-
ciently visualized with representations that place elements on a 2D 
plane and use size or color to encode further dimensions of the data 
(Fig. 2b). If one of the data dimensions is categorical and there are 
only a few categories, shapes can be used to encode the categories. 
Many general data visualization approaches are available to effectively 
represent multidimensional data on a plane. For example, a matrix of 
scatter plots each showing pairwise combinations of variables from 
a high-dimensional data set can productively reveal correlations. 
Similarly, heat maps and parallel coordinate plots1 are useful tech-
niques for plotting multidimensional data on a plane. If some infor-
mation loss is acceptable, dimensionality reduction methods such 
as principal component analysis or multidimensional scaling can be 
used to obtain a 2D representation of a high-dimensional data set.

When a 3D spatial representation is chosen, the impact of occlu-
sion should be minimized. In interactive visualizations, animated 
rotation of objects of interest is a common solution to show hid-
den surfaces. Additionally, semitransparent surfaces can be used to 
allow the viewer to look through or into objects, but this practice 
typically creates unintended visual artifacts, especially when color 
is also employed. When labels are required to describe 3D scenes, it 
is preferable to place them after the projection to the 2D display has 
been computed. If placed directly in the 3D scene, the labels may 
be distorted by the projection and become difficult or impossible 
to read.

Effective 3D spatial visualizations can be created by taking the 
properties of the data into account and applying depth cues that best 
support the visualization’s communication goals. If such visualiza-
tions are applied to abstract data, the resulting visualization needs to 
offer significant benefits over nonspatial representations of the data.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Nils Gehlenborg & Bang Wong

1. Gehlenborg, N. & Wong, B. Nat. Methods 9, 213 (2012).

Nils Gehlenborg is a research associate at Harvard Medical School and the Broad 
Institute. Bang Wong is the creative director of the Broad Institute and an adjunct 
assistant professor in the Department of Art as Applied to Medicine at The Johns 
Hopkins University School of Medicine.

POINTS OF VIEW

Into the third dimension
Three-dimensional visualizations are effective for 
spatial data but rarely for other data types.
When working with high-dimensional data, it may be tempting to 
choose a three-dimensional (3D) spatial visualization over a two-
dimensional (2D) ‘flat’ representation because it allows us an addi-
tional data dimension. However, because quantitative, categorical and 
relational data are often not representing spatial relationships, plotting 
them in 3D space adds a level of visual complexity that often makes 
the data more difficult to understand. It therefore can be more effec-
tive to plot these data on a 2D plane and rely on nonspatial graphical 
encodings to represent additional dimensions.

For certain types of data, 3D spatial visualization is the best choice. 
For example, X-ray crystallography data describe the location of atoms 
in a molecule and thus characterize something that is inherently spa-
tial. By visualizing the organization of these atoms in 3D space, we can 
reveal the molecular structure. Spatial data lend themselves to visual 
representations that reflect the 3D location information of the mea-
surements—often crucial for the interpretation of the data (Fig. 1).

Two-dimensional projections of objects use visual depth cues 
to represent a third dimension. The strongest visual cue indicating 
depth is partial occlusion, in which one object hides parts of another. 
Another depth cue is the perspective created by converging paral-
lel lines, which enables us to estimate the distances of objects from a 
certain vantage point. These depth cues are essential to depicting 3D 
objects on 2D displays (Fig. 1).

When data are plotted in 3D space, the visual cues needed to indi-
cate depth may interfere with commonly used visual encodings. 
For example, the height or length of objects can be distorted by per-
spective, making it difficult to judge the scale of elements in a plot. 
Unavoidably, data objects in the foreground will interfere with the 
visibility of elements further from the viewer (Fig. 2a). When color 
is used to represent quantities, shading or shadows cast onto objects 
as depicted by the computer software can lead to further ambiguities.

The choice between a planar and a spatial representation should 
depend on whether the interference between visual encodings and 
depth cues constitutes an acceptable tradeoff given the goals of 
the visualization. Abstract data such as those generated for gene  

Figure 1 | Space-filling model of the DNA backbone. Depth cues enable us to 
perceive two-dimensional images as three-dimensional objects.

Figure 2 | Three-dimensional representation of abstract data. (a) Data 
occlusion and interference of visual encodings with depth cues can be 
problematic in three-dimensional space. (b) The same data as in a plotted as 
a two-dimensional heat map.

Difference
in shading

Difference
in size

Partial
occlusion

Perspective

Occluding
object

Discrepancy
in appearance
relating to height3

2

1

0

ba

3210

Gehlenborg$N,$Wong$B.$Points$of$view:$Into$the$third$dimension.$Nat$Meth.$2012$Aug$30;9(9):851–1.$$



A-be9er-solu$on:-Heatmaps


Viven+$J,$Kim$DoH,$Vigeland$L,$FrecheAe$ES,$Blanco$JA,$Kim$YoS,$et$al.$Nat$Neurosci.$2011$Nov$13;14(12):1599–605.$$
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T E C H N I C A L  R E P O R T S

The extreme flexibility of our device allowed it to be folded around 
~700- m-thick silicone rubber, forming a unique, high-resolution, 
double-sided recording device that allowed access to rarely explored 
cortical areas, such as the interior of sulci or the medial aspects of 
the cerebral hemispheres (Fig. 1d). To minimize induced strain in 
the silicon, silicon dioxide and metal interconnection layers during  
folding, we reduced the overall array thickness from 76 m24 to  
25 m, resulting in a nearly tenfold reduction in bending stiffness. 
This was accomplished by reducing the polyimide substrate thickness 
from 25 m to 12.5 m, and by reducing the epoxy encapsulation 
thickness from 20 m to 8 m (Fig. 1e). The induced strain in each 
layer during folding was estimated via analytical modeling (Fig. 1f) 
and was maintained well below the mechanical fracture strain of each 
inorganic material (~1% for Si and SiO2)29.

In vivo experiments
We used our flexible electrode device to map neural activity at high 
resolution on the surface of visual cortex of ten cats in vivo (Fig. 2a). An 
initial craniotomy and durotomy exposed a 2 × 3 cm region of cortex.  
Eyes were focused on a monitor that subtended 28 × 22° of space. 
The electrode arrays were either placed on the brain or inserted into  
the interhemispheric fissure (Fig. 2a,b). Given the high flexibility of 

the electrode array, it could be placed in between the two hemispheres 
of the brain without causing damage to tissue. In this configuration, 
the recording surface is facing the left hemisphere. Alternately, the 
folded electrode array can be inserted in the same location as the flat 
electrode array (Fig. 2b), simultaneously recording from both hemi-
spheres, with the right hemisphere filtered through the dura.

Sleep spindles
We recorded spontaneous spindles during barbiturate anesthesia in 
the ECoG signal. Spindle oscillations consisted of waves repeating 
at 5–7 Hz, lasting 1–2 s and repeating every 6–10 s. Given the large 
number of channels on the electrode array and the large number of 
spindles recorded, data from a representative channel is shown for a 
typical spindle (Fig. 3a). The signal amplitude of ~1.2 mV is consistent  
with earlier published reports30. The unfiltered noise level of 30 V 
r.m.s. was greatly improved from our previous report24. Individual 
waves in spindle oscillations were identified by a detector triggered 
on a threshold of 2 s.d. above or below the mean. For four of these 
waves, the r.m.s. value of the zero-meaned signal in the 30-ms window 
before and after the peak was plotted on the array map (Fig. 3b). For 
each channel in the array with >50% of the maximum r.m.s. value, 
the time to the peak of the wave was plotted (Fig. 3b). We observed 
individual spindle waves to be spatially confined to a small region of 
brain (<5 × 5 mm) and they did not move. Spindle waves were highly 
synchronous, peaking in a few milliseconds in all of the channels that 
were involved.

a

b

Figure 2 Animal experiment using feline model. (a) A flexible, high-density 
active electrode array was placed on the visual cortex. Inset, the same 
electrode array was inserted into the interhemispheric fissure. (b) Left, 
folded electrode array before insertion into the interhemispheric fissure. 
Right, flat electrode array inserted into the interhemispheric fissure.
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Figure 3 Spontaneous barbiturate-induced sleep spindles. (a) A typical 
spindle recorded from a representative channel. Negative is plotted up 
by convention. Arrows point to individual spikes of the spindle (I–IV) 
that were further analyzed. (b) r.m.s. value of the zero-meaned signal 
of individual sharply contoured waves comprising the spindle revealed 
the high sensitivity of the electrode array and the spatially localized 
nature of spindles (left column), as well as the high degree of temporal 
synchronization indicated by the relative time to peak across the array 
(right column). Data are anatomically orientated as shown in the inset  
of Figure 4b.

Zapala$MA,$Schork$NJ.$Mul+variate$regression$analysis$of$distance$matrices$for$tes+ng$associa+ons$between$gene$expression$paAerns$and$related$variables.$Proc$Natl$Acad$Sci$USA.$2006$Dec$19;103(51):19430–5.$$



One-important-considera$on:-choice-of-color-scale
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hAp://en.wikipedia.org/wiki/False_color$



Another-alterna$ve:-dimensionality-reduc$on


Many-techniques-exist-to-take-highGdimensional-
data-and-project-it-into-fewer-dimensions:


Principal-component-analysis,-etc.




hAp://mlpy.sourceforge.net/docs/3.2/tutorial.html$



heart is composed mainly of cardiac muscles. A central
cluster, denser than the three main tissue specific
clusters, consists of cell lines and other less numerous
samples, such as bone and immune system. This co-
clustering of many sample types in the central PCA clus-
ter, in particular the cell line samples, was observed in
human studies [25] and may be due to a relatively small
degree of correlation variability between samples. Cell
lines of various tissue types are more homogeneous in
their expression profiles than the original tissues, either
because of less possible variability in the sample prepara-
tion, or because the immortalization procedure has had a
profound effect on expression regulation.

Further analysis demonstrated that samples of a parti-
cular tissue type are always represented by multiple
experiments (Additional files 1 and 2), suggesting that
lab effects did not drive the tissue clustering. We con-
clude that, similarly to what has been observed in
human, mouse samples from a given tissue class share
similar global gene expression patterns, causing the
samples to cluster together when they are projected to
the top principal components. When profiling the tran-
scriptome of thousands of samples from different tissues
and different conditions, the subtle variations within the
same class of samples give way to the grand differences
between different sample classes.

Nervous system

Liver

Muscle + heart

Cell line + others

Nervous system

Liver

Muscscscccccscccccscsccccccsss lelelelellll  + heart

l l    ine + othhers

Principal component 2
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Figure 1 PCA plot of the integrated mouse gene expression data matrix. Each dot represents a sample, which is colored by the annotation
of its tissue type. The samples can be loosely divided in four areas from left to right: nervous system (blue), muscle/heart (red), cell line (green)
and others, and liver (purple). The brown dots co-clustering with nervous system samples are retina samples. Samples with unknown organism
part (-) are white so they are invisible.

Zheng-Bradley et al. Genome Biology 2010, 11:R124
http://genomebiology.com/content/11/12/R124

Page 3 of 11

ZhengoBradley$X,$Rung$J,$Parkinson$H,$Brazma$A.$Large$scale$comparison$of$global$gene$expression$paAerns$in$human$and$mouse.$Genome$Biol.$2010;11(12):R124.$$



Don’t-forget-annota$ons!


Adding-addi$onal-informa$on-(not$data)-to-the-
graph-can-be-very-useful-when-many-dimensions-
are-involved.




ZhengoBradley$X,$Rung$J,$Parkinson$H,$Brazma$A.$Large$scale$comparison$of$global$gene$expression$paAerns$in$human$and$mouse.$Genome$Biol.$2010;11(12):R124.$$



hAp://blogs.nature.com/methagora/2013/07/datao

visualiza+onopointsoofoview.html'



Bonus!$



Ghizzo$A,$Izrar$B,$Bertrand$P,$Fijalkow$E.$Stability$of$Bernstein–Greene–Kruskal$plasma$equilibria.$Numerical$experiments$over$a$long$+me.$Physics$of$Fluids$1988$31(1).$$

Bonus!$


