DATA VISUALIZATION

Graphs

graph

A slang term for a sketching of what someone plans on tagging. graffiti.

boy 1: Hey check out this graph i drew in science class.

boy 2: It looks good call me when you want to hit up.

by Eamz February 08, 2007

2. Graph

A word used in the north west around the area of Manchester and Liverpool

It means "bad" or something that is "annoying" as in "mate that was well graph" or " stop being so graph"

" that was so graph"

" stop being so graph"

by oli hughes November 07, 2012

4

3. graph

Graph- Mythical 1337 Creature. The peak of gaming excellelance.

see leet uber
Antonyms non-factor

That was SO Graph. He killed that thing with Graph like Skills.

by BoBO1 June 10, 2005

NOUN \'graf\

A DIAGRAM REPRESENTING A SYSTEM OF CONNECTIONS OR INTERRELATIONS AMONG TWO OR MORE THINGS BY A NUMBER OF DISTINCTIVE DOTS, LINES, BARS, ETC.

DICTIONARY.COM

! TOTAL SIDEBAR HERE...

#3 News media #4 Government Reports

A visualization was more memorable if... it contains human recognizable objects.

A visualization was more memorable if... it is distinct.

A visualization was more memorable if... it is a distinct visualization type.

A visualization was more memorable if... it is colorful.

A visualization was more memorable if... it is visually dense.

A visualization was more memorable if... it has a low data-to-ink ratio.

- 1 DATA
- **2** WORKING PARTS
- **3** GRAPH TYPES
- 4 WHAT ARE WE TRYING TO SHOW?
- **5** EXAMPLES & EXPLANATIONS

GRAPHS AREN'T ALWAYS NECESSARY

Table

Interest	Before	After
Excited	19	38
Kind of interested	25	30
OK	40	14
Not great	5	6
Bored	11	12

Data courtesy of Cole Nussbaumer

How do you feel about doing science?

How do you feel about doing science?

Before the program, the majority of children felt just **OK** about science. After the program, more children were **Kind of interested** and **Excited** about science.

Opinion change to the question: How do you feel about doing science?

How do you feel about doing science?

Example courtesy of Hanspeter Pfister

After the pilot program,

68%

of kids expressed interest towards science, compared to 44% going into the program.

- 1 DATA
- **2** WORKING PARTS
- **3** GRAPH TYPES
- 4 WHAT ARE WE TRYING TO SHOW?
- **5** EXAMPLES & EXPLANATIONS

DATA DEFINITIONS

QUANTITATIVE QUALITATIVE

QUANTITATIVE QUALITATIVE

QUANTITATIVE QUALITATIVE

SO WHAT?

VALUES

RELATIONSHIPS

- 1 DATA
- **2** | WORKING PARTS
- **3** GRAPH TYPES
- 4 WHAT ARE WE TRYING TO SHOW?
- **5** EXAMPLES & EXPLANATIONS

GRAPHS: WORKING PARTS

Visual Cues

Visualization involves encoding data with shapes, colors, and sizes. Which cues you choose depends on your data and your goals.

Coordinate System

You map data differently with a scatterplot than you do with a pie chart. It's x- and y-coordinates in one and angles with the other; it's cartesian versus polar.

Title of this Graph A description of the data or something worth highlighting to set the stage. 100 units 80 60 40 20 0 Jan. Feb. Mar. Apr. May June July 2012 Source: Somewhere reputable

Scale

Increments that make sense can increase readability, as well as shift focus.

Title of this Graph

A description of the data or something worth highlighting to set the stage.

Context

If your audience is unfamiliar with the data, it's your job to clarify what values represent and explain how people should read your visualization.

PROXIMITY

GRAPHING: VISUAL CUES

VALUES

COLOR

PROXIMITY

VALUES

COLOR

QUANTITATIVE QUALITATIVE

ASSOCIATION DIFFERENTIATION

GRAPHING: COORDINATE SYSTEMS

VISUAL CUES + COORDINATE SYSTEMS

Visual cues

Linear

Values are evenly spaced

GRAPHING: SCALE

Categorical

Discrete placement in bins

Percent

Representing parts of a whole

GRAPHING:

SCALE

Logarithmic

Focus on percent change

Ordinal

Categories where order matters

Time

Units of months, days, or hours

GRAPHING: CONTEXT

Figure 1. chicken

- 1 DATA
- **2** WORKING PARTS
- 3 | GRAPH TYPES
- 4 WHAT ARE WE TRYING TO SHOW?
- **5** EXAMPLES & EXPLANATIONS

GRAPH TYPES: HEAVER HITTERS

GRAPH TYPES: OTHER

GRAPH TYPES: EXOTIC

- 1 DATA
- **2** WORKING PARTS
- **3** GRAPH TYPES
- 4 | WHAT ARE WE TRYING TO SHOW?
- **5** EXAMPLES & EXPLANATIONS

PATTERNS AND SHAPE

INCREASE

DECREASE

COMBINATION

OUTLIER

NOISE

Visual Cues

CONCEPTS

COMPARISON

TRENDS

DISTRIBUTIONS

PROPORTIONS

CORRELATIONS

COMPARE ITEMS TRENDS OVER TIME Comparison What would you -Relationship -Distribution like to show? Composition **DISTRIBUTION PROPORTIONS**

CORRELATION

Chart Suggestions—A Thought-Starter

Juice Analytics – Graph Chooser | Extreme Presentations.com

CATEGORICAL DATA: COMPARISON/COMPOSITION

Categories

When your data is straightforward, with a value for each category, these are easy to read and create.

Bar graph

With length as visual cue, useful for straightforward comparisons

Symbol plot

Can be used in place of bars, but can be hard to see small differences

Parts of a whole

The categorical breakdown within a population can be interesting, and you might want to keep the groups together, although often not essential.

Pie chart

Parts add to 100 percent, typically sorted clockwise for readability

Stacked bar chart

Often used to show poll results and can also be used for raw counts

Subcategories

Data can have a hierarchical structure, which can be important in data interpretation and it often allows for different points of view.

Treemap

Shows hierarchical structure in a compact space, area often combined with color

Mosaic plot

Allows comparisor across multiple categories in one view

65% of the market is controlled by companies B and C

RELATIONAL DATA CORRELATION

Should You Trust That Doctor?

Nathan Yau, Data Points

RELATIONAL DATA MULTIPLE VARIABLES

Nathan Yau, Data Points

Games played	Usage	Field goal %	Free throw %	3-point %	Turn- overs	Turnover ratio	Minutes per	Points per	Rebounds per	Assists per

Games played	Usage	Field goal %	Free throw %	3-point	Turn- overs	Turnover ratio	Minutes per	Points per	Rebounds per	Assists per

Nathan Yau, Data Points

Nathan Yau, Data Points

DISTRIBUTIONS

Distribution Summary

You can visualize data at different granularities with the charts above. These show key values for a less specific view of distributions.

Distribution of one variable

You can see where data is clustered and see any outliers by keeping track of where they sit on a value axis.

Histogram

Density plot

Like histogram but continuous instead of bins

Distribution of multiple variables

Sometimes values come as pairs, and it makes sense to show both values at the same time.

Heat map

Surface plot

Shows same patterns as heat map, but uses height instead of color

100 IMAGINARY PEOPLE

One-inch bins

Small bins shows variations at higher granularity.

Two-inch bins

You see less variation, but the distribution around the median is more obvious.

Half-foot bins

You can see distribution around the median, but you can only see some variation.

One-foot bins

The spread of the data isn't as obvious. because the larger bins show less detail.

- 1 DATA
- **2** WORKING PARTS
- **3** GRAPH TYPES
- 4 WHAT ARE WE TRYING TO SHOW?
- 5 | SPECIFIC EXAMPLES & EXPLANATIONS

EXAMPLES

