COMMUNICATING YOUR SCIENCE PART 1: YOU

Data After Dark January 2016

The science cycle

Slide from Gully Burns

How is science traditionally communicated?

=> In some ways, it hasn't changed in 350 years

On average, timeframe from submission to publication is 9 III 0 III 5

Translational Research

How long does it take to bring a basic science discovery to a marketable product?

15 years

Thinking Beyond the traditional manuscript

Raw Science

Small publications

Self-publishing

Datasets

Nanopublications

Blogging

Code

Argument or passage

Social Networks

Experimental design

Single figure publications

Comments & Reviews

Protocols/instr uments

Annotations

How can you manage your scholarly footprint?

You leave bread crumbs wherever you go

How many of you use social media?

A survey conducted in 2009 by CareerBuilder reported how companies use social media to screen their employees

Positive

of employees found content on social sites that influenced them to hire the candidate

Negative

35%

of employees found content on social sites that influenced them to **NOT** hire the candidate

Things to avoid posting online

1 Digital dirt

Self-incriminating photos, party pictures

3 Big mouth

Posting negative comments about your employer/coworkers

Positively negative

Keeping everything negative

Terrible troll

Trolling the internet and posting inappropriate comments on multiple sites

Copious contacts and comments

Adding sketchy people/strangers to your contacts, who post inappropriate comments

2

4

Your data will get used

Twitter data may help shed light on sleep disorders

Researchers generate a 'digital phenotype' of Twitter users with sleep problems

http://www.sciencedaily.com/releases/2015/06/150611114544.htm

Google

Open a twitter account and follow leaders in your field

Tweet at conferences, tweet about papers you read, etc.

Who are you?

ORCID

orcid.org Connecting Research and Researchers

Impact.Story

impactstory.org

=> Rely largely on social network mentions, URLs, and DOIs

Services to identify yourself and your impact

Scientists must share early and share often to boost citations

http://theconversation.com/scientists-must-share-early-and-share-often-to-boost-citations-18699

BIOGRAPHICAL SKETCH

Provide the following information for the key personnel and other significant contributors. Follow this format for each person. **DO NOT EXCEED FOUR PAGES.**

NAME	POSITION TITLE
Melissa Anne Haendel	Assistant Professor, Oregon Health and Science
eRA COMMONS USER NAME	University
MHAENDEL	

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as

INSTITUTION AND LOCATION	DEGREE (if applicable)	YEAR(s)	FIELD OF STUDY
Reed College, Portland, Oregon University of Wisconsin, Madison, Wisconsin University of Oregon, Eugene, Oregon Oregon State University, Corvallis, Oregon	B.A. Ph.D. Postdoctoral Postdoctoral	1991 1999 2002 2004	Chemistry Neuroscience Neuroscience Environmental Health and Toxicology

A. Personal Statement

My personal career goal is to further the collaboration and connection between the basic science research performed on model organisms and that performed in the clinic. I was originally a basic sciences researcher, utilizing chicken, mice and zebrafish in my research, and these connections were seemingly something to be taken on faith most of the time. My training includes ontology development, bioinformatics, and molecular biomedical research, which are specific areas of expertise that are key for this application. In my graduate work, I gained a broad background of anatomy, histology, and neuroscience, and was doing molecular biology in model organisms when bioinformatics was just becoming commonly computable. In my post-doctoral work, I utilized the zebrafish to examine the role of nuclear hormone receptors during neural development. I also worked on the effects of biocides on early development, and found this project interesting from the perspective of relating to work being done by the EPA and regulation of these compounds. As a scientific curator at the Zebrafish Information Network (ZFIN), I was responsible for the development of data standards and tools in support of the zebrafish as a model system. As nomenclature coordinator, I named genes and organisms and coordinated naming and outhology links with governing bodies of nomenclature for other model organisms and humans. At ZFIN I was also in charge of anatomical and phenotype ontologies for indexing gene expression

Citing products of your research

Credit and expertise are represented by the things that are connected to you

Science Experts Network Curriculum Vitae

Finally: Federal biosketch allows inclusion of non-traditional scholarly products

Getting a DOI for a dataset or code or other kinds of documents

https://guides.github.com/activities/citable-code/

Can your products be found?

Release early and often

Example here: http://nanopub.org/wordpress/?page_id=57

Not just your code, your ideas too.

Be careful where you publish

Peer review reviewed. Few journals did substantial review that identified the paper's flaws.

RESOURCES

figshare.com

datadryad.org

thedata.org

n2t.net/ezid

www.dataone.org

data.rutgers.edu/

nature.com/scientificdata/

Data journals and repositories

rubriq.com

thedata.org

scalar.usc.edu

Alternative publishing mechanisms

RESOURCES

www.wf4ever-project.org

runmycode.org

galaxyproject.org/

Data Analysis Pipeline Reproducibility Platforms

