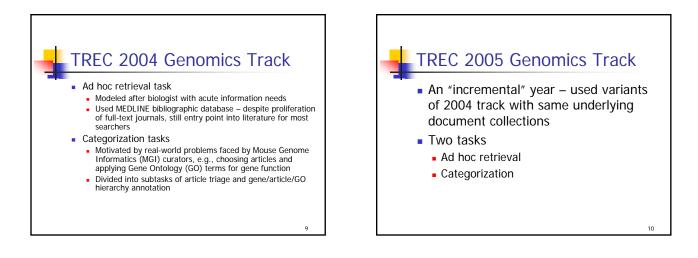
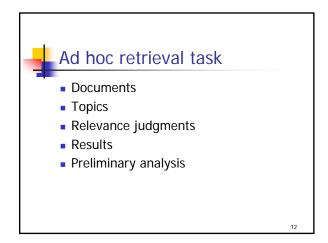
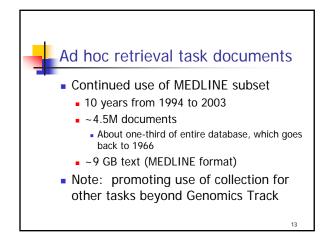
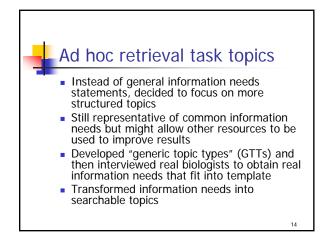

session					
10:00-10:30	Overview – Bill Hersh – Oregon Health & Science University				
10:30-11:00	BREAK				
11:00-11:20	National Library of Medicine				
11:20-11:40	IBM Ando				
11:40-12:00	York University				
12:00-12:20	Rutgers University DIMACS				

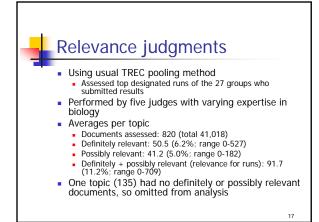


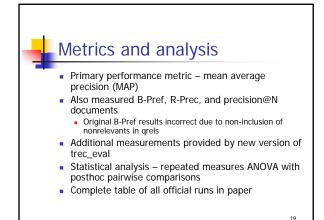


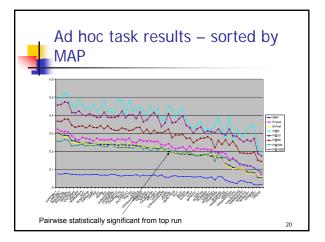


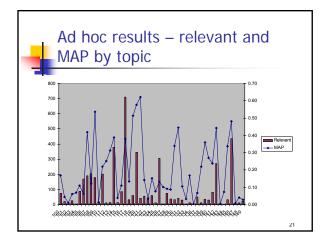


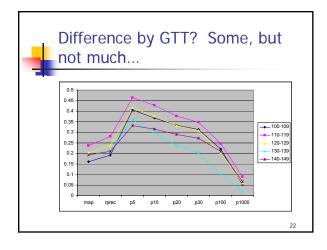
Participation – continues to grow largest in TREC						
Year	Groups doing ad hoc task	Groups doing "other" task	Total groups			
2003	25	14	28			
2004	27	20	33			
2005	32	19	41			






GTTs	
Generic Topic Type (GTT)	Range
Find articles describing standard <u>methods or protocols</u> for doing some sort of experiment or procedure	100-109
Find articles describing the role of a gene involved in a given disease	110-119
Find articles describing the role of a gene in a specific biological process	120-129
Find articles describing interactions (e.g., promote, suppress, inhibit, etc.) between two or more <u>genes</u> in the <u>function of an organ</u> or in a <u>disease</u>	130-139
Find articles describing one or more mutations of a given gene and its biological impact	140-149
<u> </u>	15


-	Example topics for	selected GTTs
	Generic Topic Type (GTT)	Example Topic
	Find articles describing standard methods or protocols for doing some sort of experiment or procedure	Method or protocol: GST fusion protein expression in Sf9 insect cells
	Find articles describing the role of a <u>gene</u> in a specific <u>biological process</u>	<u>Gene</u> : Insulin receptor gene <u>Biological process</u> : Signaling tumorigenesis
	Find articles describing one or more <u>mutations</u> of a given <u>gene</u> and its biological impact	Gene with mutation: Ret Biological impact: Thyroid function
		16



Ŭ	nt cons		
Judge 2	Relevant	Not relevant	Total
Judge 1	4400		1700
Relevant	1100	629	1729
Not relevant	546	8204	8750
Total	1646	8833	10479

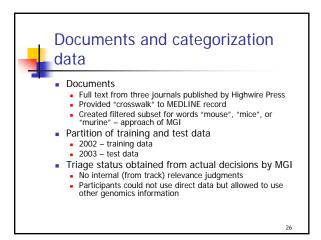
Ad hoc task analysis – general observations so far Manual synonym expansion helps (York – best run with MAP of 0.3136), automated does not (IBM Watson, NLM) Relevance feedback without term expansion

- helps (UIUC)
- Basic Okapi with good parameters gives good baseline performance (several)
 - But better characterization of baseline
 experiments would improve our understanding

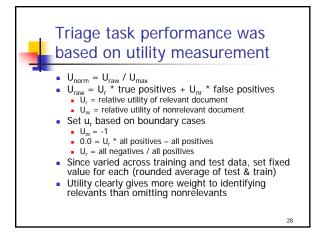
23

Categorization task
 Motivation

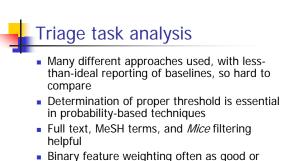
 Apply text categorization to full-text documents for tasks that assist work of MGI


 Task

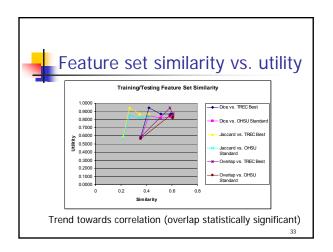
 Decided to focus on document triage this year, keeping last year's one sub-task and adding three new ones
 This type of task can have practical value in biomedicine


24

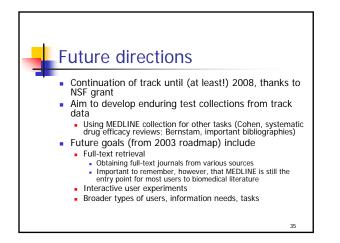
- Alleles of mutant phenotypes characteristics of organisms that have gene mutations
- Embryologic gene expression which genes are expressed at various points in embryo development
- Gene Ontology biological function of gene products
- Tumor biology genes and mutations associated with development of tumors



Full-text documents for categorization task						
Journal	2002 papers – total, subset	2003 papers – total, subset	Total papers – total, subset			
J. of Biological Chemistry	6566, 4199	6593, 4282	13159, 8481			
J. Of Cell Biology	530, 256	715, 359	1245, 615			
Proceedings of NAS	3041, 1382	2888, 1402	5929, 2784			
Total	10137, 5837	10196, 6043	20333, 11880			




Task	Training positive	Training negative	U _r calc	Test positive	Test negative	U _r calc	U _r actual
A	338	5499	16.3	332	5711	17.2	17
E	81	5756	71.1	105	5938	56.6	64
G	462	5375	11.6	518	5525	10.7	11
Т	36	5801	161.4	20	6023	301.2	231


-		notati asure		
	Task	Best u _{norm}	Median u _{norm}	Observations
	A	0.871	0.778	Middle range of performance and u _r
	E	0.871	0.641	Middle range of performance and u _r
	G	0.587	0.458	Little difference from last year; lowest u _r and still hardest
	Т	0.943	0.761	Highest u _r ; fewest relevant
				30

 Binary feature weighting often as good or better than TF*IDF, cosine normalization Training/Testing feature set – similarity vs. utility
Computed similarity measures for feature sets computed by chi-square (alpha = 0.05) on training and test collections
Overlap (A, B) = |A ∪ B| / min(|A|, |B|)
Dice (A, B) = 2*|A ∩ B| / (|A| + |B|)
Jaccard (A, B) = |A ∩ B| / |A ∪ B|
Lowest for GO, highest for Allele

