Upon this gifted age, in its dark hour Rains from the sky, a meteoric shower Of facts... they lie, unquestioned, uncombined. Wisdom enough to leach us of our ill Is daily spun; but there exists no loom To weave it into a fabric.
"Huntsman, What Quarry?". 1939, Edna St. Vincent Millay

John Tukey

If we need a short suggestion of what exploratory data analysis is, I would suggest that

1. It is an attitude, AND
2. A flexibility, AND
3. Some graph paper (or transparencies, or both).

No catalog of techniques can convey a willingness to look for what can be seen, whether or not anticipated. Yet this is at the heart of exploratory data analysis. The graph paper-and transparencies-are there, not as a technique, but rather as a recognition that the

John Tukey 1915-2000 picture-examining eye is the best finder we have of the wholly unanticipated.

Tukey, 1980 . "We need both explanatory and confirmatory" The American Statistician 34(1) 23-25
Tukey also invented/discovered: many statistical tests, the word "bit", (maybe) the word "software", the Fast Fourier Transform, etc.

Stem and Leaf Plots

Chapter 6 Test Scores					
Class A				\quad	Class B
---:					

Male		Female
$5,2,0$	1	5,8
5,1	2	$1,6,9,9$
$5,5,5,3,1$	3	
5,2	4	$1,2,6,8$
$9,8,6,1,1$	5	5
$6,5,5,0$	6	0,1
$2,1,1,0,0$	7	2

Stem and leaf plots can be useful for quickly looking at relatively small amounts of data.

Of course, if you turn them sideways, you've got a histogram...

Boxplots (also invented by Tukey)

Population distribution

Figure 1 | The construction of a box plot. (a) The median ($m=-0.19$, solid vertical line) and interquartile range (IQR $=1.38$, gray shading) are ideal for characterizing asymmetric or irregularly shaped distributions. A skewed normal distribution is shown with mean $\mu=0$ (dark dotted line) and s.d. $\sigma=1$ (light dotted lines). (b) Box plots for an $n=20$ sample from a. The box bounds the IQR divided by the median, and Tukey-style whiskers extend to a maximum of $1.5 \times$ IQR beyond the box. The box width may be scaled by $\sqrt{ } n$, and a notch may be added approximating a 95% confidence interval (CI) for the median. Open circles are sample data points. Dotted lines indicate the lengths or widths of annotated features.

Boxplots (also invented by Tukey)

Population distribution

Tukey-style whiskers: the most extreme data point that is no more than $1.5 \times \mathrm{IQR}$ from the edge of the box...

Spear-style whiskers: the most extreme values, period ($\mathrm{min} / \mathrm{max}$).

Boxplots (also invented by Tukey)

Sample variability

Aspects of the box plot such as width, whisker position, notch size and outlier display are subject to tuning; it is therefore important to clearly label how your box plot was constructed. Fewer than 20\% of box plot figures in 2013 Nature Methods papers specified both sample size and whisker type in their legends-we encourage authors to be more specific.

Boxplots (also invented by Tukey)

BUT YOU SPEND TWICE AS MUCH TIME WITH ME AS WITH ANYONE ELSE. I'M A CLEAR OUTUER.

YOUR MATH IS IRREFUTABLE.
FACE IT-I'M
 YOUR STATISTICALLY SIGNIFICANT OTHER.

Related (but not invented by Tukey):

Statistical Computing and Graphi

Violin Plots: A Box Plot-Density Trace Syn Jerry L. Hintze and Ray D. Nelson
\qquad proposed further adaptation, the violin plot, pools the best statistical features of alternative graphical representations of batches of data. It adds the information available from local density estimates to the basic summary statistics in density shape into a single plot provides a useful tool for data analysis and exploration.
KEY WORDS: Density estimation; Exploratory dat analysis; Graphical techniques.

1. INTRODUCTION

Many different tatistics and marize the char eristics of single batches of data. Descriptive statistics give ness. Other about location, scale, symmetry, and tail thick vations or study the distribution of data values. Diagram such as stem-leaf plots, dot plots, box plots, histogram density traces, and probability plots give information ab The distribution of values assumed by all observations. combines the box plot and the density trace (or smoothed histogram) into a single display that reveals structure found within the data. The introduction of this new graphical too begins with a quick overview of the combination of the box plot and density trace into the violin plot. Then, three illusof violin plots in data summarization and exploration.
2. COMPONENT PARTS OF VIOLIN PLOTS The violin plot, as depicted in Figure 1 and implemented
in NCSS (1997) statistical software, combines the box plot in NCSS (1997) statistical software, combines the box plot and density trace into one diagram. The name violin plot
originated because one of the first analyses that used the envisioned procedure resulted in a graphic with the appearance of a violin. Violin plots add information to the simple structure of the box plot that Tukey (1977) initially conceived. Although these original graphs are easily drawn with pencil and paper, computers ease subsequent modifications, refinements, and computation of box plots as disd
cussed by McGill, Tukey, and Larsen (1978); Velleman and

Jerry L. Hintze is President, NCSS, 329 North 1000 East, Kaysville, UT
84037 (E-mali: sales@ ${ }^{\text {ncsss.com). Ray D. Nelson is Associate Professor of }}$ So37 (E-mail. sales@ ncss.com). Ray D. Nelson is Associate Professor of Susiness anagement, Marriz
University, Provo, UT 84602 .

1998 American Statistical Association

600

Hintze, J. L., \& Nelson, R. D. (1998). Violin plots: a box plot-density trace synergism. The American Statistician, 52(2), 181-184.

Beeswarms:

Other examples:

Revenue													
Region	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
West	28,384	30,288	34,302	32,039	32,938	34,392	33,923	33,092	34,934	30,384	33,923	37,834	396,433
Central	15,934	16,934	17,173	16,394	17,345	16,384	15,302	14,939	14,039	12,304	11,033	9,283	177,064
East	11,293	12,384	12,938	12,034	11,034	13,983	12,384	12,374	12,384	13,374	14,394	19,283	157,859
Total	55,611	59,606	64,413	60,467	61,317	64,759	61,609	60,405	61,357	56,062	59,350	66,400	731,356

Marketing Expenses

Region	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
West	6,288	6,019	6,555	364	5,407	6,450	7,442	6,150	6,201	6,697	6,408	7,376	71,356
Central	4,429	5,039	4,309	4,951	5,442	4,675	4,558	5,124	5,278	4,016	5,325	5,898	59,044
East	851	1,784	1,542	1,024	1,864	1,173	1,237	1,504	714	1,152	2,620	2,501	17,966
Total	11,568	12,842	12,406	6,339	12,713	12,298	13,237	12,778	12,192	11,865	14,353	15,775	148,367

Profit Margin

Region	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average
West	25.11\%	24.07\%	25.52\%	25.80\%	25.93\%	26.06\%	25.02\%	24.41\%	25.13\%	25.31\%	25.12\%	25.01\%	25.13\%
Central	22.13\%	23.22\%	22.55\%	21.08\%	22.54\%	20.04\%	27.08\%	22.52\%	22.31\%	23.32\%	21.05\%	22.01\%	22.38\%
East	24.06\%	24.80\%	21.97\%	18.50\%	37.16\%	23.02\%	19.06\%	20.60\%	29.74\%	21.41\%	43.29\%	19.49\%	25.26\%
Average	23.69\%	23.93\%	23.32\%	21.77\%	28.52\%	23.01\%	23.69\%	22.37\%	25.58\%	23.24\%	29.80\%	22.16\%	24.26\%

Other examples:

Other examples:

Other examples:

The Gestalt principle of continuation is making the graph on the left look like a much smoother curve than it really is...

Bedroom
Bathroom Living Rm

Front Door
Kitchen

